135
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of cultivars and habitats on rhizospheric arbuscular mycorrhizal fungal communities associated with Gannan navel oranges

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 3102-3119 | Received 22 Nov 2022, Accepted 17 Apr 2023, Published online: 24 Apr 2023

References

  • Antoninka A, Reich PB, Johnson NC. 2011. Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol. 192(1):200–214. doi:10.1111/j.1469-8137.2011.03776.x.
  • Bever JD. 2015. Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts. New Phytol. 205(4):1503–1514. doi:10.1111/nph.13239.
  • Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC. 2014. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biol. 20(12):3646–3659. doi:10.1111/gcb.12618.
  • Camprubí A, Calvet C. 1996. Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies. HortScience. 31:366–369. doi:10.21273/HORTSCI.31.3.366.
  • Cao MA, Wang P, Hashem A, Wirth S, Abd_allah EF, Wu QS. 2021. Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture. 11(12):1297. doi:10.3390/agriculture11121297.
  • Cavagnaro TR, Franz Bender S, Asghari HR, van der Heijden MGA. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20(5):283–290. doi:10.1016/j.tplants.2015.03.004.
  • Cheng HQ, Giri B, Wu QS, Zou YN, Kuča K. 2022. Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Arch Agron Soil Sci. 68(9):1217–1228. doi:10.1080/03650340.2021.1878497.
  • Cheng XF, Xie MM, Li Y, Liu BY, Liu CY, Wu QS, Kuča K. 2022. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Appl Soil Ecol. 170:104308. doi:10.1016/j.apsoil.2021.104308.
  • Cornfield AH. 1960. Ammonia released on treating soils with sodium hydroxide as a possible means of predicting the nitrogen-supplying power of soil. Nature. 187(4733):260–261. doi:10.1038/187260a0.
  • Davis FS, Albrigo LG. 1999. Citrus. Zaragoz: Acribia, SA.
  • de Souza PVD, Schmitz JAK, de Freitas RS, Carniel E, Carrenho R, Souza PVDD, Freitas RSD. 2002. Identificação e quantificação de fungos micorrízicos arbusculares autóctones em municípios produtores de citros no Rio Grande do Sul. Pesqui Agropecu Bras. 37(4):553–558. doi:10.1590/S0100-204X2002000400018.
  • Emery SM, Kinnetz ER, Bell-Dereske L, Stahlheber KA, Gross KL, Pennington D. 2018. Low variation in arbuscular mycorrhizal fungal associations and effects on biomass among switchgrass cultivars. Biomass Bioenerg. 119:503–508. doi:10.1016/j.biombioe.2018.10.012.
  • Faggioli V, Menoyo E, Geml J, Kemppainen M, Pardo A, Julieta Salazar M, Becerra AG, Pardo A. 2019. Soil lead pollution modifies the structure of arbuscular mycorrhizal fungi communities. Mycorrhiza. 29(4):363–373. doi:10.1007/s00572-019-00895-1.
  • Gao X, Zhao S, Xu QL, Xiao JX. 2016. Transcriptome responses of grafted Citrus sinensis plants to inoculation with the arbuscular mycorrhizal fungus Glomus versiforme. Trees. 30(4):1073–1082. doi:10.1007/s00468-015-1345-6.
  • García-Garrido JM, Lendzemo V, Castellanos-Morales V, Steinkellner S, Vierheilig H. 2009. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza. 19:449–459. doi:10.1007/s00572-009-0265-y.
  • Garcia K, Zimmermann SD. 2014. The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci. 5:337. doi:10.3389/fpls.2014.00337.
  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD. 2013. Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol. 198(2):546–556. doi:10.1111/nph.12169.
  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 435:819–823. doi:10.1038/nature03610.
  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH. 2002. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperature deciduous woodland. J Ecol. 90(2):371–384. doi:10.1046/j.1365-2745.2001.00674.x.
  • Hepper CM, Azcon-Aguilar C, Rosendahl S, Sen R. 1988. Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Allium porrum L.). New Phytol. 110(2):207–215. doi:10.1111/j.1469-8137.1988.tb00254.x.
  • Hetrick BAD, Wilson GWT, Cox TS. 1993. Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot. 71(3):512–518. doi:10.1139/b93-056.
  • Hou JX, Liang L, Wang YX. 2020. Volatile composition changes in navel orange at different growth stages by HS-SPME–GC–MS. Food Res Int. 136:109333. doi:10.1016/j.foodres.2020.109333.
  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils. 37(1):1–16. doi:10.1007/s00374-002-0546-5.
  • Jiang ST, An XR, Shao YD, Kang YL, Chen TS, Mei XL, Dong CX, Xu YC, Shen QR. 2021. Responses of arbuscular mycorrhizal fungi occurrence to organic fertilizer: a meta-analysis of field studies. Plant Soil. 469(1–2):89–105. doi:10.1007/s11104-021-05153-y.
  • Jiang YN, Wang WN, Xie QJ, Liu N, Liu LX, Wang DP, Zhang XW, Yang C, Chen XY, Tang DZ, et al. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science. 356:1172–1175. doi:10.1126/science.aam9970.
  • Jie WG, Liu XR, Cai BY, Berg G. 2013. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. Plos One. 8:e72898. doi:10.1371/journal.pone.0072898.
  • Johnson NC. 1993. Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl. 3(4):749–757. doi:10.2307/1942106.
  • Johnson NC. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185(3):631–647. doi:10.1111/j.1469-8137.2009.03110.x.
  • Kryukov AA, Gorbunova AO, Machs EM, Mikhaylova YV, Rodionov AV, Zhurbenko PM, Yurkov AP. 2020. Perspectives of using Illumina MiSeq for identification of arbuscular mycorrhizal fungi. Vavilovskii Zh Genet Sel. 24(2):158–167. doi:10.18699/VJ19.38-o.
  • Landis FC, Gargas A, Givnish TJ. 2004. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytol. 164(3):493–504. doi:10.1111/j.1469-8137.2004.01202.x.
  • Li LF, Li T, Zhang Y, Zhao ZW. 2010. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol. 71(3):418–427. doi:10.1111/j.1574-6941.2009.00815.x.
  • Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY. 2012. Long‐term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ Sci Technol. 46(11):5764–5771. doi:10.1021/es3001695.
  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA. 2006. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol. 172(3):536–543. doi:10.1111/j.1469-8137.2006.01846.x.
  • Liu YJ, Johnson NC, Mao L, Shi GX, Jiang SJ, Ma XJ, Du GZ, An LZ, Feng HY. 2015. Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility. Soil Biol Biochem. 89:196–205. doi:10.1016/j.soilbio.2015.07.007.
  • Liu YJ, Mao L, Li JY, Shi GX, Jiang SJ, Ma XJ, An LZ, Du GZ, Feng HY. 2015. Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant Soil. 386(1–2):341–355. doi:10.1007/s11104-014-2261-z.
  • Li QS, Xie YC, Rahman MM, Hashem A, Abd_allah EF, Wu QS. 2022. Arbuscular mycorrhizal fungi and endophytic fungi activate leaf antioxidant defense system of lane late navel orange. J Fungi. 8(3):282. doi:10.3390/jof8030282.
  • Lópezgarcía Á, JuradoRivera JA, Bota J, Cifre J, Baraza E. 2020. Space and vine cultivar interact to determine the arbuscular mycorrhizal fungal community composition. J Fungi. 6(4):317. doi:10.3390/jof6040317.
  • Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 356:1175–1178. doi:10.1126/science.aan0081.
  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. 2010. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. 12:2165–2179. doi:10.1111/j.1462-2920.2009.02099.x.
  • Luo YF, Wang ZK, He YL, Li GF, Lv XH, Zhuang L. 2020. High-throughput sequencing analysis of the rhizosphere arbuscular mycorrhizal fungi (AMF) community composition associated with Ferula sinkiangensis. BMC Microbiol. 20(1):335. doi:10.1186/s12866-020-02024-x.
  • Ma Y. 2006. The study of arbuscular mycorrhizal resources in the rhizosphere of Fengjie navel orange (Citrus sinensis Osbeck). Chongqing province: Xinan University.
  • Moora M, Öpik M, Sen R, Zobel M. 2004. Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct Ecol. 18(4):554–562. doi:10.1111/j.0269-8463.2004.00876.x.
  • Navarro JM, Pérez-Tornero O, Morte A. 2014. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol. 171(1):76–85. doi:10.1016/j.jplph.2013.06.006.
  • Nelson DW, Sommers LE. 1983. Total carbon, organic carbon, and organic matter. In: Miller R Keeney D, editors. Methods of Soil Analysis. Part 2: chemistry and Microbial Properties. Madison, WI: American Society of Agronomy and Soil Science Society of American; pp. 539–579.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, DC: US Gov Print Office. USDA Circular No 939.
  • Olsson PA, Hammer EC, Pallon J, van Aarle IM, Wallander H, van Aarle IM. 2011. Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol. 115(7):643–648. doi:10.1016/j.funbio.2011.03.008.
  • Olsson PA, Hammer EC, Wallander H, Pallon J. 2008. Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microb. 74(13):4144–4148. doi:10.1128/AEM.00376-08.
  • Olsson PA, Rahm J, Aliasharzad N. 2010. Carbon dynamics in mycorrhizal symbioses in linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol. 72(1):125–131. doi:10.1111/j.1574-6941.2009.00833.x.
  • Öpik M, Davison J. 2016. Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungi diversity. Fungal Ecol. 24:106–113. doi:10.1016/j.funeco.2016.07.005.
  • Pallon J, Wallander H, Hammer E, Arteaga Marrero N, Auzelyte V, Elfman M, Kristiansson P, Nilsson C, Olsson PA, Wegdén M. 2007. Symbiotic fungi that are essential for plant nutrient uptake investigated with NMP. Nucl Instrum Meth B. 260(1):149–152. doi:10.1016/j.nimb.2007.02.018.
  • Parvin S, Geel MV, Ali MM, Yeasmin T, Lievens B, Honnay O. 2021. A comparison of the arbuscular mycorrhizal fungal communities among Bangladeshi modern high yielding and traditional rice varieties. Plant Soil. 462(1–2):109–124. doi:10.1007/s11104-021-04858-4.
  • Qiang W, He XL, Wang JJ, Zhao LL. 2019. Temporal and spatial variation of arbuscular mycorrhizal fungi under the canopy of Hedysarum scoparium in the northern desert, China. Appl Soil Ecol. 136:139–147. doi:10.1016/j.apsoil.2019.01.003.
  • Rasmussen PU, Hugerth LW, Blanchet FG, Andersson AF, Lindahl BD, Tack AJM. 2018. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytol. 220(4):1248–1261. doi:10.1111/nph.15088.
  • Rillig MC, Aguilar-Trigueros CA, Camenzind T, Cavagnaro TR, Degrune F, Hohmann P, Lammel DR, Mansour I, Roy J, van der Heijden MGA, et al. 2019. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222(3):1171–1175. doi:10.1111/nph.15602.
  • Rodríguez-Caballero G, Caravaca F, Roldán A. 2018. The unspecificity of the relationships between the invasive Pennisetum setaceum and mycorrhizal fungi may provide advantages during its establishment at semiarid Mediterranean sites. Sci Total Environ. 630:1464–1471. doi:10.1016/j.scitotenv.2018.02.321.
  • Rodríguez-Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, Moora M. 2016. Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol. 213(1):380–390. doi:10.1111/nph.14122.
  • Santos-González JC, Nallanchakravarthula S, Alström S, Finlay RD. 2011. Soil, but not cultivar, shapes the structure of arbuscular mycorrhizal fungal assemblages associated with strawberry. Microb Ecol. 62(1):25–35. doi:10.1007/s00248-011-9834-7.
  • Shi GX, Liu YJ, Johnson NC, Olsson PA, Mao L, Cheng G, Jiang SJ, An LZ, Du GZ, Feng HY. 2014. Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil. 378(1–2):173–188. doi:10.1007/s11104-014-2022-z.
  • Sicari V, Pellicanò TM, Giuffrè AM, Zappia C, Capocasale M. 2016. Bioactive compounds and antioxidant activity of citrus juices produced from varieties cultivated in Calabria. J Food Meas Charact. 10(4):773–780. doi:10.1007/s11694-016-9362-8.
  • Singh B, Singh JP, Kaur A, Singh N. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int. 132:109114. doi:10.1016/j.foodres.2020.109114.
  • Smith SE, Read DJ. 1997. Mycorrhizal symbiosis. 2 ed. San Diego CA USA: Academic Press.
  • Songachan LS, Kayang H, Iodalanabiang T. 2015. Diversity and species composition of arbuscular mycorrhizal fungi in citrus species. J Agr Sci Tech. 11:863–873.
  • Song F, Bai FX, Wang JJ, Wu LM, Jiang YC, Pan ZY. 2020. Influence of citrus scion/rootstock genotypes on arbuscular mycorrhizal community composition under controlled environment condition. Plants. 9:901. doi:10.3390/plants9070901.
  • Song F, Pan ZY, Bai FX, An JY, Liu JH, Guo WW, Bisseling T, Deng XX, Xiao SY. 2015. The scion/rootstock genotypes and habitats affect arbuscular mycorrhizal fungal community in citrus. Front Microbiol. 6:1372. doi:10.3389/fmicb.2015.01372.
  • Srivastava AK, Marathe SSRA, Marathe RA. 2002. Organic Citrus: soil Fertility and Plant Nutrition. J Sustain Agr. 19(3):5–29. doi:10.1300/J064v19n03_03.
  • Toby Kiers E, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, et al., Vandenkoornhuyse P, Jansa J, Bücking H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 333:880–882. doi:10.1126/science.1208473.
  • Vályi K, Rillig MC, Hempel S. 2015. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytol. 205(4):1577–1586. doi:10.1111/nph.13236.
  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR. 1998. Different arbuscular mycorrhizal fungi species are potential determinants of plant community structure. Ecology. 79(6):2082–2091. doi:10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2.
  • van Diepen LT, Lilleskov EA, Pregitzer KS, VAN Diepen LTA. 2011. Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol. 20(4):799–811. doi:10.1111/j.1365-294X.2010.04969.x.
  • van Geel M, Busschaert P, Honnay O, Lievens B. 2014. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. J Microbiol Methods. 106:93–100. doi:10.1016/j.mimet.2014.08.006.
  • Vives-Peris V, Molina L, Segura A, Gómez-Cadenas A, Pérez-Clemente RM. 2018. Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria. J Plant Physiol. 208–217.
  • Wang P, Liu JH, Xia RX, Wu QS, Wang MY, Dong T. 2011. Arbuscular mycorrhizal development, glomalin-related soil protein (GRSP) content, and rhizospheric phosphatase activity in citrus orchards under different types of soil management. J Plant Nutr Soil Sci. 174(1):65–72. doi:10.1002/jpln.200900204.
  • Wang P, Shu B, Wang Y, Zhang DJ, Liu JF, Xia RX. 2013. Diversity of arbuscular mycorrhizal fungi in red tangerine (Citrus reticulata Blanco) rootstock rhizospheric soils from hillside citrus orchards. Pedobiologia. 56(3):161–167. doi:10.1016/j.pedobi.2013.03.006.
  • Wang LT, Zhang L, George TS, Feng G. 2022. A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization. New Phytol. 238(2):859–873. doi:10.1111/nph.18642.
  • Wang P, Zhang JJ, Shu B, Xia RX. 2012. Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China. Plant Soil Environ. 58(7):302–308. doi:10.17221/676/2011-PSE.
  • Watanarojanaporn N, Boonkerd N, Wongkaew S, Prommanop P, Teaumroong N. 2011. Selection of arbuscular mycorrhizal fungi for citrus growth promotion and Phytophthora suppression. Sci Hortic (Amsterdam). 128(4):423–433. doi:10.1016/j.scienta.2011.02.007.
  • Williams A, Manoharan L, Rosenstock NP, Olsson PA, Hedlund K. 2017. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (H ordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213(2):874–885. doi:10.1111/nph.14196.
  • Winings JH, Yin X, Agyin-Birikorang S, Singh U, Sanabria J, Savoy HJ, Allen FL, Saxton AM, DeForest JL. 2016. Changes of soil microbial population and structure under short-term application of an organically enhanced nitrogen fertilizer. Soil Sci. 181(11/12):494–502. doi:10.1097/SS.0000000000000182.
  • Wu QS. 2011. Mycorrhizal efficacy of trifoliate orange seedlings on alleviating temperature stress. Plant Soil Environ. 57(10):459–464. doi:10.17221/59/2011-PSE.
  • Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y. 2012. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul. 68(1):27–35. doi:10.1007/s10725-012-9690-6.
  • Wu QS, Xia RX. 2004. Effects of arbuscular mycorrhizal fungi on plant growth and osmotic adjustment matter content of trifoliate orange seedlings under water stress. J Plant Physiol Mol Bio. 30:583–588.
  • Wu QS, Xia RX, Zou YN. 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol. 44(1):122–128. doi:10.1016/j.ejsobi.2007.10.001.
  • Wu QS, Zou YN. 2009. Arbuscular mycorrhizal symbiosis improves growth and root nutrient status of citrus subjected to salt stress. ScienceAsia. 35(4):388–391. doi:10.2306/scienceasia1513-1874.2009.35.388.
  • Xiang ZM, Chen XT, Qian CY, He K, Xiao X. 2020. Determination of volatile flavors in fresh navel orange by multidimensional gas chromatography quadrupole time-offlight mass spectrometry. Anal Lett. 53(4):614–626. doi:10.1080/00032719.2019.1662429.
  • Xiao JX, Hu CY, Chen YY, Yang B, Hua J. 2014. Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Sci Hortic (Amsterdam). 177:14–20. doi:10.1016/j.scienta.2014.07.016.
  • Xi MY, Deyett E, Ginnan N, Ashworth VETM, Dang T, Bodaghi S, Vidalakis G, Caroline Roper M, Glassman SI, Rolshausen PE. 2022. Arbuscular mycorrhizal fungal composition across US citrus orchards, management strategies, and disease severity spectrum. bioRxiv. Online.
  • Yin ZP, Zhang Y, Hu N, Shi YC, Li T, Zhao ZW. 2021. Differential responses of 23 maize cultivar seedlings to an arbuscular mycorrhizal fungus when grown in a metal-polluted soil. Sci Total Environ. 789:148015. doi:10.1016/j.scitotenv.2021.148015.
  • Youpensuk S, Lordkaew S, Rerkasem B. 2008. Arbuscular mycorrhizal fungi associated with tangerine (Citrus reticulata) in Chiang Mai province, northern Thailand, and their effects on the host plant. ScienceAsia. 34:259–264. doi:10.2306/scienceasia1513-1874.2008.34.259.
  • Zhang F, Zou YN, Wu QS. 2018. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci Hortic (Amsterdam). 229:132–136. doi:10.1016/j.scienta.2017.10.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.