198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of the application of charred and uncharred spent coffee grounds on soil Carbon and Nitrogen cycles

, ORCID Icon, , &
Pages 3235-3251 | Received 13 May 2022, Accepted 10 May 2023, Published online: 19 May 2023

References

  • Adani F, Tambone F, Genevini P. 2009. Effect of compost application rate on carbon degradation and retention in soils. Waste Manage. 29(1):174–179. doi:10.1016/j.wasman.2008.02.010.
  • Afolabi OOD, Sohail M, Cheng YL. 2020. Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renew Energ [Internet]. 147:1380–1391. doi:10.1016/j.renene.2019.09.098.
  • Alves RC, Rodrigues F, Nunes MA, Vinha AF, Oliveira MPPP. 2017. State of the Art in Coffee Processing By-Products. In: Galanakis C, editor. Handbook of Coffee Processing By-products: sustainable Applications. London: Academic Press; pp. 1–22.
  • Bamminger C, Marschner B, Juschke E. 2014. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. Eur J Soil Sci. 65(1):72–82. doi:10.1111/ejss.12074.
  • Bargmann I, Rillig MC, Buss W, Kruse A, Kucke M. 2013. Hydrochar and biochar effects on germination of spring barley. J Agron Crop Sci. 199(5):360–373. doi:10.1111/jac.12024.
  • Bovsun MA, Castaldi S, Nesterova OV, Semal VA, Sakara NA, Brikmans AV, Khokhlova AI, Karpenko TY. 2021. Effect of biochar on soil CO2 fluxes from agricultural field experiments in Russian far east. Agronomy. 11(8):5–13. doi:10.3390/agronomy11081559.
  • Caliskan S, Ozok N, Makineci E. 2020. Utilization of Spent Coffee Grounds as Media for Stone Pine (Pinus pinea) Seedlings. J Soil Sci Plant Nutr. 20(4):2014–2024. doi:10.1007/s42729-020-00271-5.
  • Cervera-Mata A, Delgado G, Fernández-Arteaga A, Fornasier F, Mondini C. 2022. Spent coffee grounds by-products and their influence on soil C–N dynamics. J Environ Qual. 302:114075. doi:10.1016/j.jenvman.2021.114075.
  • Cervera-Mata A, Lara L, Fernández-Arteaga A, Ángel Rufián-Henares J, Delgado G. 2021. Washed hydrochar from spent coffee grounds: a second generation of coffee residues. Evaluation as organic amendment. Waste Manag. 120:322–329. doi:10.1016/j.wasman.2020.11.041.
  • Cervera-Mata A, Pastoriza S, Rufián-Henares JÁ, Párraga J, Martín-García JM, Delgado G. 2018. Impact of spent coffee grounds as organic amendment on soil fertility and lettuce growth in two Mediterranean agricultural soils. Arch Agron Soil Sci. 64(6):790–804. doi:10.1080/03650340.2017.1387651. Internet.
  • Chatterjee R, Sajjadi B, Chen WY, Mattern DL, Hammer N, Raman V, Dorris A. 2020. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front Energy Res. 8:1–18. doi:10.3389/fenrg.2020.00085.
  • Comino F, Aranda V, Domínguez-Vidal A, Ayora-Cañada MJ. 2017. Thermal destruction of organic waste hydrophobicity for agricultural soils application. J Environ Manage. 202:94–105. doi:10.1016/j.jenvman.2017.07.024.
  • Comino F, Cervera-Mata A, Aranda V, Martín-García JM, Delgado G. 2020. Short-term impact of spent coffee grounds over soil organic matter composition and stability in two contrasted Mediterranean agricultural soils. J Soils Sediments. 20(3):1182–1198. doi:10.1007/s11368-019-02474-5.
  • Cruz S, Cordovil CMDS. 2015. Espresso coffee residues as a nitrogen amendment for small-scale vegetable. J Sci Food Agric. 95(15):3059–3066. doi:10.1002/jsfa.7325.
  • Cruz S, Marques dos Santos Cordovil CS. 2015. Espresso coffee residues as a nitrogen amendment for small-scale vegetable. J Sci Food Agric. 95: 3059–3066. doi:10.1002/jsfa.7325.
  • de Jager M, Giani L. 2021. An investigation of the effects of hydrochar application rate on soil amelioration and plant growth in three diverse soils. Biochar. 3(3):349–365. doi:10.1007/s42773-021-00089-z.
  • de Jager M, Rohrdanz M, Giani L. 2020. The influence of hydrochar from biogas digestate on soil improvement and plant growth aspects. Biochar. 2(2):177–194. doi:10.1007/s42773-020-00054-2.
  • De Neve S, Sleutel S, Hofman G. 2003. Carbon mineralization from composts and food industry wastes added to soil. Nutr Cycl Agroecosys. 67(1):13–20. doi:10.1023/A:1025113425069.
  • El-Mahrouky M, El-Naggar AH, Usman AR, Mohammad Al-Wabel M. 2015. Dynamics of CO2 Emission and Biochemical Properties of a Sandy Calcareous Soil Amended with Conocarpus Waste and Biochar. Pedosphere. 25(1):45. doi:10.1016/S1002-0160(14)60075-8.
  • Fang J, Gao B, Chen J, Zimmerman AR. 2015. Hydrochars derived from plant biomass under various conditions: characterization and potential applications and impacts. Chem Eng J. 267:253–259. doi:10.1016/j.cej.2015.01.026.
  • Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H, Coles JA. 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLos One. 9(12):1–19. doi:10.1371/journal.pone.0113888.
  • Gale ES, Sullivan DM, Cogger CG, Bary AI, DD H, EA M. 2006. Estimating plant-available nitrogen release from manures, composts, and specialty products. J Environ Qual. 35(6):2321–2332. doi:10.2134/jeq2006.0062.
  • Galvez A, Sinicco T, Cayuela ML, Mingorance MD, Fornasier F, Mondini C. 2012. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric Ecosyst Environ. 160:3–14. doi:10.1016/j.agee.2011.06.015.
  • Hagemann N, Kammann CI, Schmidt H-P, Kappler A, Behrens S, Paz-Ferreiro J. 2017. Nitrate capture and slow release in biochar amended compost and soil. PLos One. 12(2):e0171214 doi:10.1371/journal.pone.0171214.
  • Hardgrove SJ, Livesley SJ. 2016. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban For Urban Green. 18:1–8. doi:10.1016/j.ufug.2016.02.015.
  • Ippolito J, Cui L, Kammann C, Wrage‑mönnig N, Estavillo JM, Fuertes‑mendizabal T, Cayuela ML, Sigua G, Novak J, Spokas K, et al. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta‑data analysis review. Biochar. 2(4):421–438. doi:10.1007/s42773-020-00067-x.
  • IUSS Working Group WRB. 2014. World Soil Resources Reports No. Rome: FAO. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Vol. 106.
  • Jeffery S, Bezemer TM, Cornelissen G, van Groenigen JW, Lehmann J, Mommer L, SP S, TFJ VDV, DA W, Kuyper TW, et al. 2013. The way forward in biochar research: targeting trade-offs between the potential wins. Gcb Bioenergy. 7(1):1–13. doi:https://doi.org/10.1111/gcbb.12132.
  • Kallenbach CM, Wallenstein MD, Schipanksi ME, Grandy AS. 2019. Managing Agroecosystems for Soil Microbial Carbon Use Efficiency: ecological Unknowns, Potential Outcomes, and a Path Forward. Front Microbiol. 10:1146. doi:10.3389/fmicb.2019.01146.
  • Kambo HS, Dutta A. 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev. 45:359–378. doi:10.1016/j.rser.2015.01.050.
  • Kammann CI, Schmidt H-P, Messerschmidt N, Linsel S, Steffens D, Müller C, Koyro H-W, Conte P, Joseph S. 2015. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep. 5(1):11080 doi:10.1038/srep11080.
  • Karbout N, Beser H, Dhaouidi L, Wahba MAS, Moussa M. 2021. Evolution of nitrogen mineralization dynamics and bean production with three different organic amendments in the arid soil of south Tunisia. Italus Hortus. 28(1):74–87. doi:10.26353/j.itahort/2021.1.7487.
  • Levavausser F, Mary B, Houot S. 2021. C and N dynamics with repeated organic amendments can be simulated with the STICS model. Nutr Cycl Agroecosys. 119(1):103–121. doi:10.1007/s10705-020-10106-5.
  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, et al. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels. 2(1):71–106. doi:10.4155/bfs.10.81.
  • Liu XJ, Finley BK, Mau RL, Schwartz E, Dijkstra P, Bowker MA, Hungate BA. 2020. The soil priming effect: consistent across ecosystems, elusive mechanisms. Soil Biol Biochem. 140:107617. doi:10.1016/j.soilbio.2019.107617.
  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J, Jin Y, Zou J. 2015. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. Gcb Bioenergy. 8(2):392–406. doi:10.1111/gcbb.12265.
  • Lori M, Symanczik S, Mäder P, Efosa N, Jaenicke S, Buegger F, Tresch S, Goesmann A, Gattinger A. 2018. Distinct nitrogen provisioning from organic amendments in soil as influenced by farming system and water regime. Front Environ Sci. 6:1–14. doi:10.3389/fenvs.2018.00040.
  • Miranda KM, Espey MG, Wink DA. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide: Biology And Chemistry. 5(1):62–71. doi:10.1006/niox.2000.0319.
  • Montiel-Rozas M, Panettieri M, Madejón P, Madejón E. 2016. Carbon Sequestration in Restored Soils by Applying Organic Amendments. Land Degrad Dev. 3(3):620–629. doi:10.1002/ldr.2466.
  • Morra L, Pagano L, Iovieno P, Baldantoni D, Alfani A. 2010. Soil and vegetable crop response to addition of different levels of municipal waste compost under Mediterranean greenhouse conditions. Agron Sustain Dev. 30(3):701–709 doi:10.1051/agro/2009046.
  • Mueller T, Magid J, Jensen LS, Nielsen NE. 2003. Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data. Ecol Model. 166(1–2):3–18. doi:10.1016/S0304-3800(03)00114-5.
  • Noirot-Cosson PE, Vaudour E, Gilliot JM, Gabrielle B, Houot S. 2016. Modelling the long-term effect of urban waste compost applications on carbon and nitrogen dynamics in temperate cropland. Soil Biol Biochem. 94:138–153. doi:10.1016/j.soilbio.2015.11.014.
  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, et al. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals J Environ Sci. 3:195–206.
  • Oenema O, Boers PCM, van Eerdt MM, Fraters B, van der Meer HG, Roest CWJ, Schröder JJ, Willems WJ. 1998. Leaching of nitrate from agriculture to groundwater: the effect of policies and measures in the Netherlands. Environ Pollut. 102(1):471–478. doi:10.1016/S0269-7491(98)80071-7.
  • Olaniyan JO, Isimikalu TO, Raji BA, Affinnih KO, Alasinrin SY, Ajala ON. 2020. An investigation of the effect of biochar application rates on CO2 emissions in soils under upland rice production in southern Guinea Savannah of Nigeria. Heliyon. 6(11):e05578. doi:10.1016/j.heliyon.2020.e05578.
  • Philipps CL, Meyer KM, Garcia‑jaramillo M, Weidman CS, Stewart CE, Wanzek T, Grusak MA, Watts DW, Novak J, Trippe KM. 2022. Towards predicting biochar impacts on plant‑available soil nitrogen content. Biochar. 4(1):9. doi:10.1007/s42773-022-00137-2.
  • Powlson DS, Bhogal A, Chambers BJ, Coleman K, Macdonald AJ, Goulding KWT, Whitmore AP. 2012. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agr Ecosys Environ. 146(1):23–33.
  • Ray RL, Griffin RW, Fares A, Elhassan A, Awal R, Woldesenbet S, Risch E. 2020. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci Rep. 10(1):5849. doi:10.1038/s41598-020-62267-6.
  • Robertson GP, Paul EA. 2000. Decomposition and soil organic matter dynamics. In: Sala E, Jackson R, Mooney H Howard R, editors. Methods in Ecosystem Science. New York: Springer- Verlag; pp. 104–113.
  • Sleutel S, De Neve S, Prat Roibas MR, Hofman G. 2005. The influence of model type and incubation time on the estimation of stable organic carbon in organic materials. Eur J Soil Sci. 56(4):505–514. doi:10.1111/j.1365-2389.2004.00685.x.
  • Sommer SG, Kjellerup V, Kristjansen O. 1992. Determination of total ammonium nitrogen in pig and cattle slurry: sample preparation and analysis. Acta Agr Scand B-S P. 42(3):146–151. doi:10.1080/09064719209417969.
  • Stockdale EAR, Rees M. 1994. Relationships between biomass nitrogen and nitrogen extracted by other nitrogen availability. Soil Biol Biochem. 26(9):1213–1220. doi:10.1016/0038-0717(94)90146-5.
  • Tomczyk A, Sokołowska Z, Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotecnol. 19(1):191–215. doi:10.1007/s11157-020-09523-3.
  • Truong THH, Marschner P. 2018. Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma. 319(1):167–174. doi:10.1016/j.geoderma.2018.01.012.
  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass. Soil Biol Biochem. 19(6):703–707. doi:10.1016/0038-0717(87)90052-6.
  • Wang D, Griffin DE, Parikh SJ, Scow KM. 2016. Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events. Chemosphere. 160:287–292. doi:10.1016/j.chemosphere.2016.06.100.
  • Wang T, Zhai Y, Zhu Y, Li C, Zeng G. 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev. 90:223–247. doi:10.1016/j.rser.2018.03.071.
  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC. 2007. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil. 300(1–2):9–20. doi:10.1007/s11104-007-9391-5.
  • Yan X, Zhou H, Zhu QH, Wanga XF, Zhang YZ, Yu XC, Peng X. 2013. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Till Res. 130:42–51. doi:10.1016/j.still.2013.01.013.
  • Zhang Q, Xiao J, Xue J, Zhang L. 2020. Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis. Sustain. 12(8):1–14. doi:10.3390/SU12083436.
  • Zhou Y, Li D, Li Z, Guo S, Chen Z, Wu L, Zhao Y. 2023. Greenhouse Gas Emissions from Soils Amended with Cornstalk Biochar at Different Addition Ratios. Int J Environ Res Public Health. 20(2):927. doi:10.3390/ijerph20020927.
  • Zimmerman AR, Gao B, Ahn MY. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar amended soils. Soil Biol Biochem. 43(6):1169–1179. doi:10.1016/j.soilbio.2011.02.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.