222
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of controlled traffic on maintaining physical soil quality in sugarcane fields under different crop management systems

, , , , &
Pages 3266-3283 | Received 21 Oct 2022, Accepted 19 May 2023, Published online: 27 May 2023

References

  • Abd-Elwahed MS. 2019. Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Ann Agric Sci. 64(2):151–160. doi:10.1016/j.aoas.2019.10.003.
  • Abu-Hamdeh NH. 2003. Soil compaction and root distribution for okra as affected by tillage and vehicle parameters. Soil Tillage Res. 74(1):25–35. doi:10.1016/S0167-1987(03)00122-3.
  • Ali SE, Yuan Q, Wang S, Farag MA. 2021. More than sweet: a phytochemical and pharmacological review of sugarcane (Saccharum officinarum L.). Food Biosci. 44: 101–431. doi:10.1016/j.fbio.2021.101431.
  • Almeida BG 2008. Métodos alternativos de determinação de parâmetros físicos do solo e uso de condicionadores químicos no estudo da qualidade do solo. [Alternative methods for determining soil physical parameters and the use of chemical conditioners in the study of soil quality] [ dissertation]. São Paulo: ESALQ- USP. Portuguese.
  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorol Z. 22(6):711–728. doi:10.1127/0941-2948/2013/0507.
  • Alvarez MF, Osterrieth M, Cooper M. 2018. Changes in the porosity induced by tillage in typical Argiudolls of southeastern buenos aires province, Argentina, and its relationship with the living space of the mesofauna: a preliminary study. Environ Earth Sci. 77: 134. doi:10.1007/s12665-018-7313-x.
  • Ball BC, Batey T, Munkholm LJ. 2007. Field assessment of soil structural quality – a development of the peerlkamp test. Soil Use Manage. 23(4):329–337. doi:10.1111/j.1475-2743.2007.00102.x.
  • Ball BC, Douglas JT. 2003. A simple procedure for assessing soil structural, rooting and surface conditions. Soil Use Manage. 19(1):50–56. doi:10.1111/j.1475-2743.2003.tb00279.x.
  • Ball BC, Guimarães RML, Cloy JM, Hargreaves PR, Shepherd TG, McKenzie BM. 2017. Visual soil evaluation: a summary of some applications and potential developments for agriculture: visual soil evaluation and soil compaction research. Soil Tillage Res. 173: 114–124. doi:10.1016/j.still.2016.07.006.
  • Ball BC, Hargreaves PR, Watson CA. 2018. A framework of connections between soil and people can help improve sustainability of the food system and soil functions. Ambio. 47: 269–283. doi:10.1007/s13280-017-0965-z.
  • Barbosa LC, Magalhães PSG, Bordonal RO, Cherubin MR, Castioni GAF, Tenelli S, Franco HCJ, Carvalho JLN. 2019. Soil physical quality associated with tillage practices during sugarcane planting in south-central Brazil. Soil Tillage Res. 195: 104–383. doi:10.1016/j.still.2019.104383.
  • Bottinelli N, Jouquet P, Capowiez Y, Podwojewski P, Grimaldi M, Peng X. 2015. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res. 146: 118–124. doi:10.1016/j.still.2014.01.007.
  • Briliawan BD, Wijayanto N, Wasis B. 2022. Visual soil structure quality and its correlation to quantitative soil physical properties of upland rice site in Falcataria moluccana agroforestry system. Biodivers J Biol Divers. 23(4). doi:10.13057/biodiv/d230423.
  • Castioni GAF, de Lima RP, Cherubin MR, Bordonal RO, Rolim MM, Carvalho JLN. 2021. Machinery traffic in sugarcane straw removal operation: stress transmitted and soil compaction. Soil Tillage Res. 213: 105–122. doi:10.1016/j.still.2021.105122.
  • Cavalcanti RQ, Rolim MM, de Lima RP, Tavares UE, Pedrosa EMR, Cherubin MR. 2020. Soil physical changes induced by sugarcane cultivation in the Atlantic forest biome, northeastern Brazil. Geoderma. 370: 114–353. doi:10.1016/j.geoderma.2020.114353.
  • Çelik İ, Günal H, Acar M, Acir N, Bereket Barut Z, Budak M, Aitkenhead M. 2020. Evaluating the long-term effects of tillage systems on soil structural quality using visual assessment and classical methods. Soil Use Manag. 36(2):223–239. doi:10.1111/sum.12554.
  • Cherubin MR, Franco ALC, Guimarães RML, Tormena CA, Cerri CEP, Karlen DL, Cerri CC. 2017. Assessing soil structural quality under Brazilian sugarcane expansion areas using Visual Evaluation of Soil Structure (VESS). Soil Tillage Res. 173: 64–74. doi:10.1016/j.still.2016.05.004.
  • Cherubin MR, Karlen DL, Franco ALC, Tormena CA, Cerri CEP, Davies CA, Cerri CC. 2016. Soil physical quality response to sugarcane expansion in Brazil. Geoderma. 267:156–168. doi:10.1016/j.geoderma.2016.01.004.
  • Coelho MPM, Correia JE, Vasques LI, de C MA, de A GT, Soto MA, Basso JB, Kiang C, Fontanetti CS. 2018. Toxicity evaluation of leached of sugarcane vinasse: histopathology and immunostaining of cellular stress protein. Ecotoxicol Environ Saf. 165: 367–375. doi:10.1016/j.ecoenv.2018.08.099.
  • Colombi T, Torres LC, Walter A, Keller T. 2018. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth – a vicious circle. Sci Total Environ. 626: 1026–1035. doi:10.1016/j.scitotenv.2018.01.129.
  • Conab - Boletim da Safra de Cana-de-Açúcar. [ accessed 2022 Aug 30]. [https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar].
  • Costa CS, Pedrosa EMR, Rolim MM, Santos HRB, Cordeiro Neto AT. 2013. Effects of vinasse application under the physical attributes of soil covered with sugarcane straw. Eng Agríc. 33(4):636–646. doi:10.1590/S0100-69162013000400005.
  • Costa MS, Rolim MM, da SG, Simões Neto DE, Santos Júnior JA, de F SE. 2021. Biometric responses of sugarcane under high doses of vinasse. Rev bras eng agríc ambient. 25(9):641–647. doi:10.1590/1807-1929/agriambi.v25n9p641-647.
  • Dahwa E, Mudzengi CP, Mubvuma M, Maravanyika T, Chapungu L, Chikodza E. 2022. “Optimizing productivity in semi-arid dryland agriculture for developing countries: insights from zimbabwe”. In: In: Poshiwa X Ravindra Chary G, editors. Climate Change adaptations in dryland agriculture in semi-arid areas. Singapore: Springer Nature; pp. 233–249. doi:10.1007/978-981-16-7861-5_16.
  • Da Luz FB, Carvalho ML, Castioni GAF, de Oliveira Bordonal, de Oliveira BR M, Carvalho JLN, Cherubin MR, de Oliveira Bordonal R. 2022. Soil structure changes induced by tillage and reduction of machinery traffic on sugarcane – a diversity of assessment scales. Soil Tillage Res. 223:105–469. doi:10.1016/j.still.2022.105469.
  • da VT, S PE, Rolim MM, Oliveira VS, Oliveira AKS, AMPL S. 2012. Relações de atributos do solo e estabilidade de agregados em canaviais com e sem vinhaça. Rev bras eng agríc ambient. 16(11):1215–1222. doi:10.1590/S1415-43662012001100010.
  • De Melo TR, Ferreira RRM, Navroski D, Feltran CTM, Filho JT. 2018. Physico-chemical attributes of a cambisol under pasture managed with annual burns after sugarcane vinasse application. null. 7: 75–81. doi:10.1007/s40093-018-0193-y.
  • Demetrio W, Guimarães RML, Cavalieri-Polizeli KMV, Cavalieri-Polizeli KMV, Guimarães RML, Ferreira SA, Parron LM, Brown GG, Dickinson N, Demetrio W, et al. 2022. Macrofauna communities and their relationship with soil structural quality in different land use systems. Soil Res. 60(7):648–660. doi:10.1071/SR21157.
  • De Oliveira AF, de Moraes Sá JC, Lal R, Tivet F, Briedis C, Inagaki TM, Gonçalves DRP, Romaniw J, de Moraes Sá JC. 2018. Macroaggregation and soil organic carbon restoration in a highly weathered Brazilian oxisol after two decades under no-till. Sci Total Environ. 621:1559–1567. doi:10.1016/j.scitotenv.2017.10.072.
  • De Sousa ACM, Farhate CVV, de Souza ZM, Torres JLR, da Silva RB, de Souza ZM, da Silva RB. 2019. Soil load-bearing capacity and development of root system in area under sugarcane with traffic control in brazil. Sugar Tech. 21(1):153–161. doi:10.1007/s12355-018-0636-9.
  • Embrapa. 2018. Sistema Brasileiro de Classificação de Solos. In: Embrapa, Rio de Janeiro. 5th ed. p. 306.
  • Ercole TM, Gomes JBV, Motta ACV, Ferreira MM, Inda AV, Mancini M, Curi N. 2023. Aggregation stability and carbon pools in extremely kaolinitic soils from the east coast of brazil as affected by land use changes. sustainability. 15: 1204. doi:10.3390/su15021204.
  • Esteban DAA, de Souza ZM, da Silva RB, de Souza LE, Lovera LH, de Oliveira IN. 2020. Impact of permanent traffic lanes on the soil physical and mechanical properties in mechanized sugarcane fields with the use of automatic steering. Geoderma. 362:114097. doi:10.1016/j.geoderma.2019.114097.
  • Etana A, Holm L, Rydberg T, Keller T. 2020. Soil and crop responses to controlled traffic farming in reduced tillage and no-till: some experiences from field experiments and on-farm studies in Sweden. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 70(4):333–340. doi:10.1080/09064710.2020.1728372.
  • Franco HHS, Guimarães RML, Tormena CA, Cherubin MR, Favilla HS. 2019. Global applications of the Visual Evaluation of Soil Structure method: a systematic review and meta-analysis. Soil Tillage Res. 190: 61–69. doi:10.1016/j.still.2019.01.002.
  • Gee GW, Or D.2002.2Vol. 4 “Particle‐size analysis. Methods of soil analysis: part 4 physical methods”5thpp. 255–293.10.2136/sssabookser5.4.c12
  • Gonçalves ADMA, Libardi PL. 2013. Análise da determinação da condutividade hidráulica do solo pelo método do perfil instantâneo. Rev Bras Ciênc Solo. 37(5):1174–1184. doi:10.1590/S0100-06832013000500007.
  • Guenette KG, Hernandez-Ramirez G, Gamache P, Andreiuk R, Fausak L, Lupwayi N. 2019. Soil structure dynamics in annual croplands under controlled traffic management. Can J Soil Sci. 99(2):146–160. doi:10.1139/cjss-2018-0117.
  • Guimarães RML, Ball BC, Tormena C. 2011. Improvements in the visual evaluation of soil structure. Soil Use Manag. 27: 395–403. doi:10.1111/j.1475-2743.2011.00354.x.
  • Guimarães RML, Ball BC, Tormena CA, Giarola NFB, da Silva ÁP. 2013. Relating visual evaluation of soil structure to other physical properties in soils of contrasting texture and management. Soil Tillage Res Special. 127(127):92–99. doi:10.1016/j.still.2012.01.020.
  • Guimarães Júnnyor WS, Diserens E, De Maria IC, Araujo-Junior CF, Farhate CVV, de Souza ZM. 2019. Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Sci Total Environ. 681: 424–434. doi:10.1016/j.scitotenv.2019.05.009.
  • Guimarães RML, Lamandé M, Munkholm LJ, Ball BC, Keller T. 2017. Opportunities and future directions for visual soil evaluation methods in soil structure research. Soil Tillage Res. 173: 104–113. doi:10.1016/j.still.2017.01.016.
  • Gunkel G, Kosmol J, Sobral M, Rohn H, Montenegro S, Aureliano J. 2007. Sugar cane industry as a source of water pollution – Case Study on the situation in Ipojuca River, Pernambuco, Brazil. Wat Air Soil Poll. 180(1):261–269. doi:10.1007/s11270-006-9268-x.
  • Haruna SI, Anderson SH, Nkongolo NV, Zaibon S. 2018. Soil hydraulic properties: influence of tillage and cover crops. Pedosphere. 28: 430–442. doi:10.1016/S1002-0160(17)60387-4.
  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. In: World Soil Resources Reports No. Vol. 106. Rome: FAO.
  • Jiang Z-P, Li Y-R, Wei G-P, Liao Q, Su T-M, Meng Y-C, Zhang H-Y, Lu C-Y. 2012. Effect of long-term vinasse application on physico-chemical properties of sugarcane field soils. Sugar Tech. 14(4):412–417. doi:10.1007/s12355-012-0174-9.
  • Júnnyor WSG, Maria ICD, Araujo-Junior CF, Lima CC, Vitti AC, Figueiredo GC, Dechen SCF. 2019. Soil compaction on traffic lane due to soil tillage and sugarcane mechanical harvesting operations. Sci Agric. 76(6):509–517. doi:10.1590/1678-992X-2018-0052.
  • Karlen DL, Veum KS, Sudduth KA, Obrycki JF, Nunes MR. 2019. Soil health assessment: past accomplishments, current activities, and future opportunities. Soil Tillage Res195. 195:104365. doi:10.1016/j.still.2019.104365.
  • Karp SG, Burgos WJM, Vandenberghe LPS, Diestra KV, Torres LAZ, Woiciechowski AL, Letti LAJ, Pereira GVM, Thomaz-Soccol V, Rodrigues C, et al. 2022. Sugarcane: a promising source of green carbon in the circular bioeconomy. Sugar Tech. 24(4):1230–1245. doi:10.1007/s12355-022-01161-z.
  • Liu J, Basnayake J, Jackson PA, Chen X, Zhao J, Zhao P, Yang L, Bai Y, Xia H, Zan F, et al. Growth and yield of sugarcane genotypes are strongly correlated across irrigated and rainfed environments. Field Crops Res. 2016;196:418–425. doi:10.1016/j.fcr.2016.07.022.
  • Lucas M, Schlüter S, Vogel HJ, Vetterlein D. 2019. Soil structure formation along an agricultural chronosequence. Geoderma. 350:61–72. doi:10.1016/j.geoderma.2019.04.041.
  • Martinelli LA, Filoso S. 2008. Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl. 18(4):885–898. doi:10.1890/07-1813.1.
  • Martíni AF, Valani GP, Boschi RS, Bovi RC, Simões LF, Cooper M. 2020. Is soil quality a concern in sugarcane cultivation? A bibliometric review. Soil Tillage Res. 204: 104751. doi:10.1016/j.still.2020.104751.
  • Meded VD Landbouwhogeschool en Opzoekingsstations van de
  • Mello K, Taniwak RH, Paula FR, Valente RA, Randhir TO, Macedo DR, Leal CG, Rodrigues CB, Hughes RM. 2020. Multiscale land use impacts on water quality: assessment, planning, and future perspectives in Brazil. null. 270: 110–879. doi:10.1016/j.jenvman.2020.110879.
  • Moradi-Choghamarani F, Moosavi AA, Baghernejad M. 2019. Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. J Therm Anal Calorim. 138(1):331–342. doi:10.1007/s10973-019-08186-9.
  • Moradi-Choghamarani F, Moosavi AA, Sepaskhah AR, Baghernejad M. 2019. Physico-hydraulic properties of sugarcane bagasse-derived biochar: the role of pyrolysis temperature. Cellulose. 26(12):7125–7143. doi:10.1007/s10570-019-02607-6.
  • Mozaffari H, Akbar Moosavi A, Ostovari Y, Cornelis W. 2022. Comparing visible-near-infrared spectroscopy with classical regression pedotransfer functions for predicting near-saturated and saturated hydraulic conductivity of calcareous soils. J Hydrol. 613: 128–412. doi:10.1016/j.jhydrol.2022.128412.
  • Mueller L, Kay BD, Hu C, Li Y, Schindler U, Behrendt A, Shepherd TG, Ball BC. 2009. Visual assessment of soil structure: evaluation of methodologies on sites in Canada, China and Germany: part I: comparing visual methods and linking them with soil physical data and grain yield of cereals. Soil Tillage Res. 103(1):178–187. doi:10.1016/j.still.2008.12.015.
  • Muñoz-Rojas M. 2018. Soil quality indicators: critical tools in ecosystem restoration. Curr Opin Environ Sci Health. 5: 47–52. doi:10.1016/j.coesh.2018.04.007.
  • Mutuku EA, Vanlauwe B, Roobroeck D, Boeckx P, Cornelis WM. 2021. Visual soil examination and evaluation in the sub-humid and semi-arid regions of Kenya. Soil Tillage Res. 213: 105–135. doi:10.1016/j.still.2021.105135.
  • Nikseresht F, Landi A, Sayyad G, Ghezelbash GR, Schulin R. 2020. Sugarcane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. J Environ Manag. 268: 110639. doi:10.1016/j.jenvman.2020.110639.
  • Nimmo JR, Perkings KS. 2002. Agreggate stability and size distribution. In: Dane J, and Topp G, editors Methods of soil analysis. part 4: physical methods. 5th ed. Madison, Wiscosin, USA: Soil Science Society of American Book Series; pp. 812–815.
  • Nunes NSP, de Almeida JMO, Fonseca GG, de Carvalho EM. 2022. Clarification of sugarcane (Saccharum officinarum) vinasse for microalgae cultivation. Bioresour Technol. 19: 101125. doi:10.1016/j.biteb.2022.101125.
  • Oliveira Filho JS, dos SO, Rossi CQ, de FG DY, de S FH, da SR PL, Pereira W, Pereira MG. 2021. Assessing the effects of harvesting with and without burning and vinasse application in sugarcane crops: evaluation of soil fertility and phosphorus pools in different ethanol production systems. Agric Ecosyst Environ. 307: 107233. doi:10.1016/j.agee.2020.107233.
  • Ortiz PFS, Rolim MM, de Lima JLP, Pedrosa EMR, Dantas MSM, Tavares UE. 2017. Physical qualities of an ultisol under sugarcane and Atlantic forest in Brazil. 11:62–70. Geoderma 10.1016/j.geodrs.2017.10.001.
  • Otto R, Silva AP, Franco HCJ, Oliveira ECA, Trivelin PCO. 2011. High soil penetration resistance reduces sugarcane root system development. Soil Tillage Res. 117: 201–210. doi:10.1016/j.still.2011.10.005.
  • Palacios-Bereche MC, Palacios-Bereche R, Ensinas AV, Gallego AG, Modesto M, Nebra SA. 2022. Brazilian sugar cane industry – a survey on future improvements in the process energy management. Energy. 259:124903. doi:10.1016/j.energy.2022.124903.
  • Pinto TJS, Moreira RA, Freitas JS, Silva LCM, Yoshii MPC, Lopes LF, Ogura AP, Mello GV, Rosa LMT, Schiesari L, et al. 2023. Responses of Chironomus sancticaroli to the simulation of environmental contamination by sugarcane management practices: water and sediment toxicity. Sci Total Environ. 857: 159643. doi:10.1016/j.scitotenv.2022.159643.
  • Powlson DS, Poulton PR, Glendining MJ, Macdonald AJ, Goulding KWT. 2022. Is it possible to attain the same soil organic matter content in arable agricultural soils as under natural vegetation? Outlook Agric. 51: 91–104. doi:10.1177/00307270221082113.
  • Prado RM, Caione G, Campos CNS. 2013. FilteR cake and vinasse as fertilizers contributing to conservation agriculture. Applied Environ Soil Sci. 2013:1–8. doi:10.1155/2013/581984.
  • Prevedello CL, Armindo RA. 2015. [Soil physics with problems solved]. In: UFPR editors. Física do solo com problemas resolvidos. 2nd ed. Curitiba: Prevedello; p. 474.
  • Rabot E, Wiesmeier M, Schlüter S, Vogel HJ. 2018. Soil structure as an indicator of soil functions: a review. Geoderma. 314:122–137. doi:10.1016/j.geoderma.2017.11.009.
  • Ramos MF, Almeida WRS, Do Amaral RL, Suzuki S, LEAS RDL. 2022. Degree of compactness and soil quality of peach orchards with different production ages. Soil Tillage Res. 219:105324. doi:10.1016/j.still.2022.105324.
  • Reichert JM, da Rosa VT, Vogelmann ES, da Rosa DP, Horn R, Reinert DJ, Sattler A, Denardin JE, da Rosa VT, da Rosa DP. 2016. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil Tillage Res. 158:123–136. doi:10.1016/j.still.2015.11.010.
  • Rezaee L, Moosavi AA, Davatgar N, Sepaskhah AR. 2020. Soil quality indices of paddy soils in Guilan province of northern Iran: spatial variability and their influential parameters. Ecolog Indicat. 117: 106566. doi:10.1016/j.ecolind.2020.106566.
  • Ribeiro BT, de LJ, Curi N, de OG. 2013. Aggregate breakdown and dispersion of soil samples amended with sugarcane vinasse. Sci Agric. 70(6):435–441. doi:10.1590/S0103-90162013000600009.
  • Rodrigues RCE, Hu B. 2017. Vinasse from sugarcane ethanol production: better treatment Or better utilization? Front Energy Res. 5: 7. doi:10.3389/fenrg.2017.00007.
  • Roque AAO, Souza ZM, Barbosa RS, Souza GS. 2010. Controle de tráfego agrícola e atributos físicos do solo em área cultivada com cana-de-açúcar. Pesq Agropec Bras. 45(7):744–750. doi:10.1590/S0100-204X2010000700016.
  • Rulli MM, Villegas LB, Colin VL. 2020. Treatment of sugarcane vinasse using an autochthonous fungus from the northwest of Argentina and its potential application in fertigation practices. J Environ Chem Eng. 8(5):104371. doi:10.1016/j.jece.2020.104371.
  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF 2018. Sistema 1044 Brasileiro de Classificação de Solos. 5 ed. Brasilia: Embrapap. 356 pp.
  • Santos HV, Scotti MR. 2018. Riparian reforestation with a single exotic species restores soil aggregation and porosity but not humic substances. Soil Use Manag. 34(1):124–133. doi:10.1111/sum.12405.
  • Sattolo TMS, Pereira LM, Otto R, Francisco E, Duarte AP, Kappes C, Prochnow LI, Cherubin MR. 2021. Effects of land use, tillage management, and crop diversification on soil physical quality in cerrado agricultural systems. Soil Sci Soc Am J. 85(5):1799–1813. doi:10.1002/saj2.20306.
  • Scarpare FV, Hernandes TAD, Ruiz-Corrêa ST, Picoli MCA, Scanlon BR, Chagas MF, Duft DG, Cardoso TF. 2016. Sugarcane land use and water resources assessment in the expansion area in Brazil. J Clean Prod. 133: 1318–1327. doi:10.1016/j.jclepro.2016.06.074.
  • Teixeira PC, Donagemma GK, Fontana A, Teixeira WG. Manual de métodos de análise de solo. [Manual of soil analysis methods]. 3. ed. Brasília: Embrapa. Portuguese; 2017.
  • Tivet F, de Moraes Sá JC, Lal R, Briedis C, Borszowskei PR, dos Santos JB, Farias A, Eurich G, Hartman DC, Nadolny Junior M, et al. Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil Tillage Res. 2013;126:203–218. doi:10.1016/j.still.2012.09.004.
  • Toledo MPS, Rolim MM, de Lima RP, Cavalcanti RQ, Ortiz PFS, Cherubin MR. 2021. Strength, swelling and compressibility of unsaturated sugarcane soils. Soil Tillage Res. 212: 105072. doi:10.1016/j.still.2021.105072.
  • Vischi FOJ, Souza, Souza, Silva, de SZM JLR, Lima, de SGS ZMD, da SRB GSD, Silva RBD, de LME MED, et al. 2017. Physical attributes and limiting water range as soil quality indicators after mechanical harvesting of sugarcane. Aust J Crop Sci. 11(2):169–176. https://search.informit.org/doi/abs/10.3316/informit.821637944361523.
  • Ward M, McDonnell K, Metzger K, Forristal PD. 2021. The effect of machine traffic zones associated with field headlands on soil structure in a survey of 41 tilled fields in a temperate maritime climate. Soil Tillage Res. 210: 104938. doi:10.1016/j.still.2021.104938.
  • Yamaguchi CS, Ramos NP, Carvalho CS, Pires AMM, de AC. 2017. Sugarcane straw decomposition and carbon balance as a function of initial biomass and vinasse addition to soil surface. Bragantia. 76(1):135–144. doi:10.1590/1678-4499.580.
  • Yoder RE. 1936. A direct method of aggregate analysis of soil and a study of the physical nature erosion losses. Agron J. 28(5):337–358. doi:10.2134/agronj1936.00021962002800050001x.
  • Zahedifar M. 2023. Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena. 222:106807. doi:10.1016/j.catena.2022.106807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.