814
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrating nitrogen fertilization with crop residues to improve nitrogen management in intensively managed cropping systems

ORCID Icon, , , &
Pages 1-16 | Received 04 Aug 2023, Accepted 08 Nov 2023, Published online: 25 Nov 2023

References

  • Adhikari B, Poudel A, Kafle K, Yadav SK, Gelal R, Oli B. 2021. Effect of different fertilizer doses on the production of Chaite-5 paddy variety in Dhanusha District, Nepal. AAES. 6(4):528–534. doi: 10.26832/24566632.2021.0604015.
  • Akter S, Kamruzzaman M, Khan MZ, Amin MS. 2023. Enhanced potassium fertilization improved rice (Oryza sativa) yield and nutrient uptake in coastal saline soil of Bangladesh. J Soil Sci Plant Nutr. 23(2):1884–1895. doi: 10.1007/s42729-023-01144-3.
  • Alam MK, Bell RW, Haque ME, Islam MA, Kader MA. 2020. Soil nitrogen storage and availability to crops are increased by conservation agriculture practices in rice-based cropping systems in the Eastern Gangetic Plains. Field Crops Res. 250:107764. doi: 10.1016/j.fcr.2020.107764.
  • Bell RW, Haque ME, Jahiruddin M, Rahman MM, Begum M, Miah MM, Islam MA, Hossen MA, Salahin N, Zahan T. 2018. Conservation agriculture for rice-based intensive cropping by smallholders in the eastern Gangetic plain. Agriculture. 9(1):5. doi: 10.3390/agriculture9010005.
  • Bernard SM, Habash DZ. 2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 182(3):608–620. doi: 10.1111/j.1469-8137.2009.02823.x.
  • Blake GR, Hartge KH. 1986. Bulk density. In: Klute A, editor, Methods of soil analysis: part 1 physical and mineralogical methods. Vol. 5. pp. 363–375. URL. doi: 10.2136/sssabookser5.1.2ed.c13
  • Blanco-Canqui H. 2013. Crop residue removal for bioenergy reduces soil carbon pools: how can we offset carbon losses? Bioenerg Res. 6(1):358–371. doi: 10.1007/s12155-012-9221-3.
  • Burgess AJ, Wang P. 2022. Not all Calvin’s are equal: differential control of the Calvin cycle in C3 versus C4 plants. Plant Physiology. 191(2):817–819. doi: 10.1093/plphys/kiac531.
  • Chen B, Liu E, Tian Q, Yan C, Zhang Y. 2014. Soil nitrogen dynamics and crop residues. A review. Agron Sustain Dev. 34(2):429–442. doi: 10.1007/s13593-014-0207-8.
  • Congreves KA, Otchere O, Ferland D, Farzadfar S, Williams S, Arcand MM. 2021. Nitrogen use efficiency definitions of today and tomorrow. Front Plant Sci. 12:637108. doi: 10.3389/fpls.2021.637108.
  • Dai PA, Nie J, Zheng SX, Xiao J. 2003. Efficiency of nutrient utilization of controlled-release nitrogen fertilizer for rice at different soil fertility levels. Chin J Soil Sci. 34:115–119.
  • Erisman JW. 2021. How ammonia feeds and pollutes the world. Sci. 374(6568):685–686. doi: 10.1126/science.abm3492.
  • FAO. 2018. The future of food and agriculture—alternative pathways to 2050. https://www.fao.org/3/CA1553EN/ca1553en.pdf.
  • Fewcett JK. 1954. The semi-micro Kjeldahl method for the determination of nitrogen. J Med Lab Technol. 12(1):1–22.
  • FRG. 2018. Fertilizer recommendation guide, Bangladesh Agricultural Research Council (BARC). Dhaka: Farmgate.
  • Gee GW, Bauder JW. 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci Soc Am J. 43(5):1004–1007. doi: 10.2136/sssaj1979.03615995004300050038x.
  • Gentile R, Vanlauwe B, Chivenge P, Six J. 2008. Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biol Biochem. 40(9):2375–2384. doi: 10.1016/j.soilbio.2008.05.018.
  • Gupta RK, Sidhu HS. 2009. Nitrogen and residue management effects on agronomic productivity and nitrogen use efficiency in rice–wheat system in Indian Punjab. Nutr Cycl Agroecosyst. 84(2):141–154. doi: 10.1007/s10705-008-9233-8.
  • Hadas A, Kautsky L, Goek M, Kara EE. 2004. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem. 36(2):255–266. doi: 10.1016/j.soilbio.2003.09.012.
  • Halder M, Ahmad SJ, Rahman T, Joardar JC, Siddique MAB, Islam MS, Islam MU, Liu S, Rabbi S, Peng X. 2023. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh. Geoderma Regional. 32:e00620. doi: 10.1016/j.geodrs.2023.e00620.
  • Huang PM, Hardie AG. 2009. Formation mechanisms of humic substances in the environment. In: Nicola S, editor. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Washington: Wiley and Sons Inc; p. 41–109.
  • Huang S, Zeng Y, Wu J, Shi Q, Pan X. 2013. Effect of crop residue retention on rice yield in China: a meta-analysis. Field Crops Res. 154:188–194. doi: 10.1016/j.fcr.2013.08.013.
  • Jackson ML. 1973. Soil chemical analysis. Vol. 498. New Delhi, India: Pentice Hall of India Pvt Ltd; pp. 151–154.
  • Jahangir MMR, Rahman S, Uddin S, Mumu NJ, Biswas C, Jahiruddin M, Müller C, Zaman M. 2022. Crop residue interactions with fertilizer rate enhances volatilization loss and reduces nitrogen use efficiency in irrigated maize and potato. Arch Agron Soil Sci. 69(10):1833–1845.
  • Jan WE, James G, Mark AS, Zbigniew K, Winiwarter W. 2008. How a century of ammonia synthesis inferences the world. Nature Geosciences. 1:636–639. doi: 10.1038/ngeo325.
  • Janzen HH, Kucey RMN. 1988. C, N, and S mineralization of crop residues as influenced by crop species and nutrient regime. Plant Soil. 106(1):35–41. doi: 10.1007/BF02371192.
  • Jing B, Niu N, Zhang W, Wang J, Diao M. 2020. 15N tracer-based analysis of fertiliser nitrogen accumulation, utilization and distribution in processing tomato at different growth stages. Acta Agriculturae Scandinavica Soil Plant Sci. 70(8):620–627. doi: 10.1080/09064710.2020.1825786.
  • Joern BC, Vitosh ML. 1995. Influence of applied nitrogen on potato part I: yield, quality, and nitrogen uptake. Am Potato J. 72(1):51–63. doi: 10.1007/BF02874379.
  • Kader MA, Jahangir MMR, Islam MR, Begum R, Nasreen SS, Islam MR, Mahmud AA, Haque ME, Bell RW, Jahiruddin M. 2022. Long-term conservation agriculture increases nitrogen use efficiency by crops, land equivalent ratio and soil carbon stock in a subtropical rice-based cropping system. Field Crop Research. 287:108636. doi: 10.1016/j.fcr.2022.108636.
  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J. 2014. 50-year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett. 9:105011. doi: 10.1088/1748-9326/9/10/105011.
  • Lu W, Zhang H, Min J, Shi W. 2015. Dissimilatory nitrate reduction to ammonium in a soil under greenhouse vegetable cultivation as affected by organic amendments. J Soils Sediments. 15(5):1169–1177. doi: 10.1007/s11368-015-1089-3.
  • Menegat S, Ledo A, Tirado R. 2022. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci Rep. 12(14490). doi: 10.1038/s41598-022-18773-w.
  • Moll RH, Kamprath EJ, Jackson WA. 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron J. 74(3):562–564. doi: 10.2134/agronj1982.00021962007400030037x.
  • Nelson DW, Sommers LE. 1973. Determination of total nitrogen in plant material 1. Agron J. 65(1):109–112. doi: 10.2134/agronj1973.00021962006500010033x.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA circular 939. Washington, DC, USA: USDA.
  • Panuccio MR, Muscolo A, Nardi S. 2001. Effect of humic substances on nitrogen uptake and assimilation in two species of Pinus. J Plant Nutr. 24(4–5):693–704. doi: 10.1081/PLN-100103663.
  • Pituello C, Polese R, Morari F, Berti A. 2016. Outcomes from a long-term study on crop residue effects on plant yield and nitrogen use efficiency in contrasting soils. Eur J Agron. 77:179–187. doi: 10.1016/j.eja.2015.11.027.
  • Qi-Chun Z, Guang-Huo W. 2002. Optimal nitrogen application for direct-seeding early rice. Chinese Jof Rice Sci. 16:346.
  • Quemada M, Lassaletta L, Jensen LS, Godinot O, Brentrup F, Buckley C, Foray S, Hvid SK, Oenema J, Richards KG. 2020. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric Syst. 177:102689. doi: 10.1016/j.agsy.2019.102689.
  • Sage RF, Pearcy RW. 1987. The nitrogen use efficiency of C3 and C4 plants: I. Leaf nitrogen, growth, and biomass partitioning in (Chenopodium album L.) and Amaranthus retroflexus (L.). Plant Physiol. 84:954–958. doi: 10.1104/pp.84.3.954.
  • Schauberger G, Piringer M, Mikovits C, Zollitsch W, Hörtenhuber SJ, Baumgartner J, Niebuhr K, Anders I, Andre K, Hennig-Pauka I. 2018. Impact of global warming on the odour and ammonia emissions of livestock buildings used for fattening pigs. Biosyst Eng. 175:106–114. doi: 10.1016/j.biosystemseng.2018.09.001.
  • Scopel E, Da Silva FA, Corbeels M, Affholder F, Maraux F. 2004. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomy. 24:383–395. doi: 10.1051/agro:2004029.
  • Singh B, Rengel Z. 2007. The Role of Crop Residues in Improving Soil Fertility. In: Marschner P, Renzel Z, editors. Nutrient Cycling In Terrestrial Ecosystems. Heidelberg, Germany: Springer; p. 183–214.
  • Smith JL, Papendick RI, Bezdicek DF, and Lynch JM.1992. Soil organic matter dynamics and crop residue management. In: Metting FBJr, editor. Soil Microbial Ecology: Applications In Agricultural And Environmental Management. New York: Marcel Dekker Inc; p. 65–94.
  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WE, Zech W. 2007. Long-term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil. 291:275–290. doi: 10.1007/s11104-007-9193-9.
  • van Grinsven HJ, Bouwman L, Cassman KG, van Es HM, McCrackin ML, Beusen AH. 2015. Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050. J Environ Qual. 44(2):356–367. doi: 10.2134/jeq2014.03.0102.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wang X, Wang K, Yin T, Zhao Y, Liu W, Shen Y, Ding Y, Tang S. 2021. Nitrogen fertilizer regulated grain storage protein synthesis and reduced chalkiness of rice under actual field warming. Front Plant Sci. 12:715436. doi: 10.3389/fpls.2021.715436.
  • Williams CH, Steinbergs A. 1959. Soil sulfur fractions as chemical indices of available sulfur in some Australian soils. Aust J Agric Res. 10:231–242. doi: 10.1071/AR9590340.
  • Xiao L, Kuhn NJ, Zhao R, Cao L. 2021. Net effects of conservation agriculture principles on sustainable land use: a synthesis. Glob Chang Biol. 27(24):6321–6330. doi: 10.1111/gcb.15906.
  • Xin Z, and Davidson E. 2019. ESS Open Archive. Frostburg MD, USA: University of Maryland Center for Environmental Science. Report No. 12. doi: 10.1002/essoar.10501111.1.
  • Ye Q, Zhang H, Wei H, Zhang Y, Wang B, Xia K, Huo Z, Dai Q, Xu K. 2007. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Front Agric China. 1(1):30–36. doi: 10.1007/s11703-007-0005-z.
  • Yuan KN. 1983. Chemical analysis of plant nutrients in soil. Beijing, China: Science Press.
  • Zhang X, Wang Y, Schulte-Uebbing L, De Vries W, Zou T, Davidson EA. 2022. Sustainable nitrogen management index: definition, global assessment and potential improvements. FASE. 9(3):356–365.
  • Zhou X, Wu F. 2015. Changes in soil chemical characters and enzyme activities during continuous monocropping of cucumber (Cucumis sativus). Pak J Bot. 47:691–697.
  • Zoran IS, Nikolaos K, Sunic L. 2014. Tomato fruit quality from organic and conventional production. In: Vytautas P, editor. Organic agriculture towards sustainability. London UK: InTechOpen; p. 284. doi: 10.5772/58239.