299
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Artificial neural network (ANN) in forecasting of poverty line and economic-energetic efficiencies into the maize-based agroecosystems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-17 | Received 09 Jan 2023, Accepted 20 Nov 2023, Published online: 02 Dec 2023

References

  • Ahmad Z, Mat Noor R, Zhang J. 2009. Multiple neural networks modeling techniques in process control: a review. Asia-Pacific J Chem Eng. 4(4):403–419. doi: 10.1002/apj.213
  • Aslam F, Salman A, Jan I. 2019. Predicting wheat production in Pakistan by using an artificial neural network approach. SJA. 35(4):1054–1062. doi: 10.17582/journal.sja/2019/35.4.1054.1062
  • Boltvinik J. 2012. Treinta años de medición de la pobreza en México: Una mirada desde Coplamar. Estudios Sociológicos de El Colegio de México. 30:83–110. https://estudiossociologicos.colmex.mx/index.php/es
  • Boltvinik JMA. 2003. La canasta normativa de satisfactores esenciales de la Coplamar. Génesis y desarrollos recientes. Comercio Exterior. 53(5):473–484. http://revistas.bancomext.gob.mx/rce/magazines/20/9/RCE9.pdf.
  • Borrego EM, Román JV. 2019. Pluriactividad, consumo y persistencia del maíz en dos municipios del noroeste del Estado de México. Revista Euroamericana de Antropología. (7):41. doi: 10.14201/rea201974153
  • Chhagan B-R, Sharma M-P, Sharma K-R, Samanta A, Wani O-A, Kachroo D, Kumar M, Razdan VK, Sharma V, Mondal A-K, et al. 2019. Effect of organic, inorganic and bio fertilizers on soil physicochemical properties in rainfed maize-wheat cropping system of jammu. Int J Curr mMicrobiol App Sci. 8(4):2539–2545. doi: 10.20546/ijcmas.2019.804.296
  • CONAPO. 2020. Índices de marginacion. Gobierno de México. https://datos.gob.mx/busca/organization/conapo
  • Coplamar CG, Del Pndzd. 2003. In: Veintiuno CS, editor. Macroeconomía de las necesidades esenciales en México, situación actual y perspectivas al año 2000. Mexico: Coordinación General del Plan Nacional e Zonas Deprimidas.
  • Davim J-P. 2012. Statistical and computational techniques in manufacturing. Springer Science & Business Media. https://books.google.com.mx/books?hl=es&lr=&id=aKlhXtgw_uwC&oi=fnd&pg=PR3&ots=7QgcIsGbPT&sig=iRgWoS4tDHrpArUp0nI_Jv5pvEc&redir_esc=y#v=onepage&q&f=false
  • Del Pozo Rodriguez P, De Melo VC, Rodriguez O. 2014. El análisis emergético como herramienta para evaluar la sustentabilidad en dos sistemas productivos. Revista Ciencias Técnicas Agropecuarias. 23(4):59–63. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2071-00542014000400010.
  • Dominguez-Hernandez ME, Zepeda-Bautista R, Dominguez-Hernandez E, Valderrama-Bravo M, Del C, Hernández-Simón LM. 2020. Effect of lime water–manure organic fertilizers on the productivity, energy efficiency and profitability of rainfed maize production. Arch Agron Soil Sci. 66(3):370–385. doi: 10.1080/03650340.2019.1616287
  • Dorofki M, Elshafie A-H, Jaafar O, Karim O-A, Mastura S. 2012. Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data, 2012 International Conference on Environment, Energy and Biotechnology. 33:39–44. www.ipcbee.com/vol33/008-ICEEB2012-B021.pdf
  • Dutta S, Rakshit S, Chatterjee D. 2020. Use of artificial intelligence in IPM. Food And Scientific Reports. 1(4):65–72. doi: 10.5958/0974-8172.2020.00183.2
  • Elbeltagi A, Deng J, Wang K, Hong Y. 2020. Crop water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt. Agric Water Manag. 235:106080. doi: 10.1016/j.agwat.2020.106080.
  • Estévez V, Ayala J, Vespa C, Araya M. 2016. The gluten-free basic food basket: a problem of availability, cost and nutritional composition. Eur J Clin Nutr. 70(10):1215–1217. doi: 10.1038/ejcn.2016.139
  • FIRA FI, En R, Con la A. 2019. Panorama Agroalimentario, Tendencias en el entorno nacional e internacional de las principales redes de valor agroalimentarias. Dirección de Investigación y Evaluación Económica y Sectorial. 98–99. https://www.gob.mx/fira/documentos/panorama-agroalimentario.
  • García M J-A. 2002. La Gestion Participativa En Las Grandes Empresas Industriales Españolas: Grado de Uso, Resultados Obtenidos y Comparación Internacional. https://riunet.upv.es/handle/10251/5845
  • Haarhoff S-J, Kotzé T-N, Swanepoel P-A. 2020. A prospectus for sustainability of rainfed maize production systems in South Africa. Crop Science. 60(1):14–28. doi: 10.1002/csc2.20103
  • Huang Z 2021. Poverty prediction through machine learning. 2021 2nd International Conference on E-Commerce and Internet Technology (ECIT). 10.1109/ecit52743.2021.00073
  • Karsoliya S. 2012. Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. IJETT. 3(6):714–717. http://www.ijettjournal.org/volume-3/issue-6/IJETT-V3I6P206.pdf.
  • Khanali M, Mobli H, Hosseinzadeh-Bandbafha H. 2017. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environ Sci Pollut Res. 24(34):26324–26340. doi: 10.1007/s11356-017-0234-5
  • Linares P, Labandeira X. 2010. Energy efficiency: economics and policy. J Econ Surv. 24(3):573–592. doi: 10.1111/j.1467-6419.2009.00609.x
  • Maozhun S, Ji L. 2017. Improved Garson algorithm based on neural network model. Proceedings of the 29th Chinese Control and Decision Conference, CCDC. 4307–4312. 10.1109/CCDC.2017.7979255
  • Meza-Palacios R, Aguilar-Lasserre A-A, Morales-Mendoza L-F, Rico-Contreras J-O, Sánchez-Medel L-H, Fernández-Lambert G. 2020. Decision support system for NPK fertilization: a solution method for minimizing the impact on human health, climate change, ecosystem quality and resources. J Environ Sci Health - Toxic/Hazard Subst Environ Eng. 55(11):1267–1282. doi: 10.1080/10934529.2020.1787012
  • Nabavi-Pelesaraei A, Abdi R, Rafiee S, Shamshirband S, Yousefinejad-Ostadkelayeh M. 2016. Resource management in cropping systems using artificial intelligence techniques: a case study of orange orchards in north of Iran. Stochastic Environ Res Risk Assessment. 30(1):413–427. doi: 10.1007/s00477-015-1152-z
  • Nabavi-Pelesaraei A, Rafiee S, Hosseini-Fashami F, Chau K-W. 2021. Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products. Predictive Mod For Energy Manage Power Sys Engineering Chapter. 11:299–334. doi: 10.1016/B978-0-12-817772-3.00011-2.
  • Noor R-A, Ahmad M, Don M-M Z, M-H U. 2010. Modelling and control of different types of polymerization processes using neural networks technique: a review. Can J Chem Eng. 88(6):1065–1084. doi: 10.1002/cjce.20364
  • Odum H-T. 1995. Environmental accounting, emergy and decision making. John Wiley and Sons; p. 384. https://www.wiley.com/en-us/Environmental+Accounting%3A+Emergy+and+Environmental+Decision+Making-p-9780471114420
  • Okaidat A, Melhem S, Alenezi H, Duwairi R (2021). Using convolutional neural networks on satellite images to predict poverty. (2021b, mayo 24). IEEE Conference Publication | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/9464598
  • Papada L, Kaliampakos D (2022). Exploring energy poverty indicators through artificial neural networks. In Artificial Intelligence and Sustainable Computing: Proceedings of ICSISCET 2021 (pp. 231–242). Singapore: Springer Nature Singapore.
  • Pérez R-A, Flores J-C-B. 2003. Balance energetic en dos sistemas de producción de maíz en las condiciones de Cuba. Cent. Agrícola. Vol. 30. Gale Academic OneFile; pp. 84–87. link.gale.com/apps/doc/A146742398/AONE?u=anon~b590045d&sid=googleScholar&xid=efd1a912
  • Piao L, Li M, Xiao J, Gu W, Zhan M, Cao C, Zhao M, Li C. 2019. Effects of soil tillage and canopy optimization on grain yield, root growth, and water use efficiency of rainfed maize in Northeast China. Agronomy. 9(336):1–14. doi: 10.3390/agronomy9060336
  • Pino‐Mejías R, Pérez-Fargallo A, Rubio-Bellido C, Pulido-Arcas J-A. 2018. Artificial neural networks and linear regression prediction models for social housing allocation: fuel poverty potential risk index. Energy. 164:627–641. doi: 10.1016/j.energy.2018.09.056.
  • Pradhan A, Idol T, Roul P-K. 2016. Conservation agriculture practices in rainfed uplands of India improve maize-based system productivity and profitability. Front Plant Sci. 7:1–12. doi: 10.3389/fpls.2016.01008.
  • Purroy-Vásquez R, Gallardo-López F, Díaz-Rivera P, Ortega-Jiménez E, López-Ortiz S, Torres-Hernández G. 2015. Contribución de las actividades productivas del agroecosistema a la superación de la pobreza de la familia rural, en el centro del estado de Veracruz, México. Revista de La Facultad de Agronomia. 32(4): 495–514.
  • Ramírez RS, Figueroa Rodríguez A, Hernández Rosas F. 2013. Relación entre la producción agrícola y marginación a nivel municipal para el Estado de Veracruz, México. Revista Mexicana de Agronegocios. 17(33): 528–538.
  • Sengul S, Tuncer İ. 2005. Poverty levels and food demand of the poor in Turkey. Agribusiness. 21(3):289–311. doi: 10.1002/agr.20049
  • Sharma R, Kamble S-S, Gunasekaran A, Kumar V, Kumar A. 2020. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res. 119:104926. doi: 10.1016/j.cor.2020.104926.
  • Sharma N, Singh R-J, Mandal D, Kumar A, Alam N, Keesstra S. 2017. Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agric Ecosyst Environ. 247:43–53. doi: 10.1016/j.agee.2017.06.026.
  • Singh R-J, Ghosh B-N, Sharma N-K, Patra S, Dadhwal K-S, Mishra P-K. 2016. Energy budgeting and emergy synthesis of rainfed maize-wheat rotation system with different soil amendment applications. Ecol Indic. 61:753–765. doi: 10.1016/j.ecolind.2015.10.026.
  • Tobasura I, Moreno F-A, Aya S, Mora J. 2012. Productividad energética y financiera en fincas campesinas del departamento de Caldas: Tres estudios de caso. Luna Azul ISSN 1909-2474. 34:101–112. http://190.15.17.25/lunazul/downloads/Lunazul34_7.pdf.
  • Ugbaje SU, Odeh IO, Bishop TF. 2019. Fuzzy measure-based multicriteria land assessment for rainfed maize in West Africa for the current and a range of plausible future climates. Comput Electron Agric. 158:51–67.
  • Ureta C, González E-J, Espinosa A, Trueba A, Piñeyro-Nelson A, Álvarez-Buylla E-R. 2020. Maize yield in Mexico under climate change. Agric Syst. 177:102697. doi: 10.1016/j.agsy.2019.102697.
  • Valdés N, Pérez D, Márquez M, Angarica L, Vargas D. 2009. Funcionamiento y balance energético en agroecosistemas diversos. Cultivos Tropicales. 30(2): 36–42.
  • Yan X 2021. Predicting poverty through machine learning and satellite images. (2021, 3 diciembre). IEEE Conference Publication IEEE Xplore. https://ieeexplore.ieee.org/document/9670555