354
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of organic amendments on soil structure, microbial community and water transport in the Qinghai Lake watershed, North-Eastern Qinghai–Tibet Plateau

&
Pages 1-17 | Received 21 Jun 2023, Accepted 26 Nov 2023, Published online: 05 Dec 2023

References

  • Abiven S, Menasseri S, Chenu C. 2009. The effects of organic inputs over time on soil aggregate stability–A literature analysis. Soil Biol Biochem. 41(1):1–12. doi: 10.1016/j.soilbio.2008.09.015.
  • Bach EM, Williams RJ, Hargreaves S, Yang F, Hofmockel KS. 2018. Greatest soil microbial diversity found in micro-habitats. Soil Biol Biochem. 118:217–226. doi: 10.1016/j.soilbio.2017.12.018.
  • Bell SL, Zimmerman AE, Hofmockel KS. 2023. Cropping system drives microbial community response to simulated climate change and plant inputs. J Soil Water Conserv. 78(2):178–192. doi: 10.2489/jswc.2023.00069.
  • Bierer AM, Maguire RO, Strickland MS, Stewart RD, Thomason WE. 2020. Evaluating effects of dairy manure application method on soil health and nitrate. Evaluating effects of dairy manure application method on soil health and nitrate. J Soil Water Conserv. 75(4):527–536. doi: 10.2489/jswc.2020.00074.
  • Bierer AM, Maguire RO, Strickland MS, Stewart RD, Thomason WE. 2021. Manure injection alters the spatial distribution of soil nitrate, mineralizable carbon, and microbial biomass. J Soil Water Conserv. 76(2):175–189. doi: 10.2489/jswc.2021.00002.
  • Bipfubusa M, Angers D, N’Dayegamiye A, Antoun H. 2008. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci Soc Am J. 72(1):160–166. doi: 10.2136/sssaj2007.0055.
  • Bossio DA, Fleck JA, Scow KM, Fujii R. 2006. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol Biochem. 38(6):1223–1233. doi: 10.1016/j.soilbio.2005.09.027.
  • Brant J B, Sulzman E W and Myrold D D. (2006). Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 38(8), 2219–2232. 10.1016/j.soilbio.2006.01.022
  • Chen Y, Ren C, Yang B, Peng Y and Dai C. (2013). Priming Effects of the Endophytic Fungus Phomopsis liquidambari on Soil Mineral N Transformations. Microb Ecol, 65(1), 161–170. 10.1007/s00248-012-0093-z
  • Chivenge P, Vanlauwe B, Gentile R, Six J. 2011. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol Biochem. 43(3):657–666. doi: 10.1016/j.soilbio.2010.12.002.
  • Dal Ferro N, Berti A, Francioso O, Ferrari E, Matthews GP, Morari F. 2012. Investigating the effects of wettability and pore size distribution on aggregate stability: the role of soil organic matter and the humic fraction. Eur J Soil Sci. 63(2):152–164. doi: 10.1111/j.1365-2389.2012.01427.x.
  • Dal Ferro N, Charrier P, Morari F. 2013. Dual-scale micro-CT assessment of soil structure in a long-term fertilization experiment. Geoderma. 204-205:84–93. doi: 10.1016/j.geoderma.2013.04.012.
  • Deurer M, Grinev D, Young I, Clothier BE, Muller K. 2009. The impact of soil carbon management on soil macropore structure: a comparison of two apple orchard systems in New Zealand. Eur J Soil Sci. 60(6):945–955. doi: 10.1111/j.1365-2389.2009.01164.x.
  • Diacono M, Montemurro F. 2011. Long-term effects of organic amendments on soil fertility. Agron Sustain Dev. 2:761–786.
  • Ebel BA. 2012. Wildfire impacts on soil-water retention in the Colorado front range, United States. Water Resour Res. 48(12):1–12. doi: 10.1029/2012WR012362.
  • Elliott ET. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J. 50(3):627–633. doi: 10.2136/sssaj1986.03615995005000030017x.
  • Gao Z, Hu X, Li XY. 2021. Changes in soil water retention and content during shrub encroachment process in Inner Mongolia, northern China. Catena. 206:105528. doi: 10.1016/j.catena.2021.105528.
  • Garcia-Orenes F, Guerrero C, Mataix-Solera J, Navarro-Pedreno J, Gomez I, Mataix-Beneyto J. 2005. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids. Soil Tillage Res. 82(1):65–76. doi: 10.1016/j.still.2004.06.004.
  • Gee GW, Bauder JW. 1986. Particle-size analysis. In: Klute A, editor Methods of soil analysis. Part 1. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Part. Anal. p. 383–411. A. Klute methods soil anal. Part 1. 2nd ed. Agron. Monogr. 9. Madison, WI: ASA SSSA; pp. 383–411.
  • Grosbellet C, Vidal-Beaudet L, Caubel V, Charpentier S. 2011. Improvement of soil structure formation by degradation of coarse organic matter. Geoderma. 162(1–2):27–38. doi: 10.1016/j.geoderma.2011.01.003.
  • Hafida Z, Caron J, Angers DA. 2007. Pore occlusion by sugars and lipids as a possible mechanism of aggregate stability in amended soils. Soil Sci Soc Am J. 71(6):1831–1839. doi: 10.2136/sssaj2006.0257.
  • Hu X, Li XY, Li ZC, Gao Z, Wu XC, Wang P, Lyu YL, Liu LY. 2019. Linking 3-D soil macropores and root architecture to near saturated hydraulic conductivity of typical meadow soil types in the Qinghai Lake watershed, northeastern Qinghai–Tibet Plateau. Catena. 185:104287. doi: 10.1016/j.catena.2019.104287.
  • Hu X, Li X, Zhao Y, Cheng Y, Gao Z and Yang Z. (2022). Identification of water flow through non‐root soil macropores and along roots in shrub‐encroached grassland. European J Soil Science, 73(4), 10.1111/ejss.13260
  • Jarvis NJ. 2007. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci. 58(3):523–546. doi: 10.1111/j.1365-2389.2007.00915.x.
  • Jarvis NJ, Larsbo M, Roulier S, Lindahl A, Persson L. 2007. The role of soil properties in regulating non-equilibrium macropore flow and solute transport in agricultural topsoils. Eur J Soil Sci. 58(1):282–292. doi: 10.1111/j.1365-2389.2006.00837.x.
  • Jien SH, Kuo YL, Liao CS, Wu YT, Igalavithana AD, Tsang DCW, Ok YS. 2021. Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environ Pollut. 272:116009–7491. doi: 10.1016/j.envpol.2020.116009.
  • Kaiser K, Miehe G, Barthelmes A, Ehrmann O, Scharf A, Schult M, Schlütz F, Adamczyk S and Frenzel B. (2008). Turf-bearing topsoils on the central Tibetan Plateau, China: Pedology, botany, geochronology. CATENA, 73(3), 300–311. 10.1016/j.catena.2007.12.001
  • Krause HM, Hüppi R, Leifeld J, El-Hadidi M, Harter J, Kappler A, Hartmann M, Behrens S, M¨ader P, Gattinger A. 2018. Biochar affects community composition of nitrous oxide reducers in a field experiment. Soil Biol Biochem. 119:143–151. doi: 10.1016/j.soilbio.2018.01.018.
  • Kravchenko AN, Negassa WC, Guber AK, Hildebrandt B, Marsh TL, Rivers ML. 2014. Intra-aggregate pore structure influences phylogenetic composition of bacterial community in macroaggregates. Soil Sci Soc Am J. 78(6):1924–1939. doi: 10.2136/sssaj2014.07.0308.
  • Kuikman P, Van Elsas J, Jansen A, Burgers S, Van Veen J. 1990. Population dynamics and activity of bacteria and protozoa in relation to their spatial distribution in soil. Soil Biol Biochem. 22(8):1063–1073. doi: 10.1016/0038-0717(90)90031-T.
  • Lal R. 2015. Restoring soil quality to mitigate soil degradation. Sustainability. 7(5):5875–5895. doi: 10.3390/su7055875.
  • Ling N, Sun Y, Ma J, Guo J, Zhu P, Peng C, Yu G, Ran W, Guo S, Shen Q. 2014. Response of the bacterial diversity and soil enzyme activity in particle-size fractions of mollisol after different fertilization in a long-term experiment. Biol Fertil Soils. 50(6):901–911. doi: 10.1007/s00374-014-0911-1.
  • Majrashi MA, Obour AK, Moorberg CJ, Lollato RP, Holman JD, Du J, Mikha MM, Assefa Y. 2022. No-tillage and fertilizer-nitrogen improved sorghum yield in dryland wheat–sorghum–fallow rotation. J Soil Water Conserv. 77(6):609–618.
  • Mummey DL, Stahl PD. 2004. Analysis of soil whole- and inner-microaggregate bacterial communities. Microb Ecol. 48(1):41–50. doi: 10.1007/s00248-003-1000-4.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Bartels JM Bigham JM, editors Methods of soil analysis part 3—chemical methods. Madison WI., USA: Soil Science Society of America; pp. 961–1010.
  • Nunan N, Ritz K, Rivers M, Feeney DS, Young IM. 2006. Investigating microbial micro-habitat structure using X-ray computed tomography. Geoderma. 133(3–4):398–407. doi: 10.1016/j.geoderma.2005.08.004.
  • Pachepsky Y, Rawls W, Timlin D. 2000. A one-parameter relationship between unsaturated hydraulic conductivity and water retention. Soil Sci. 165(12):911–919. doi: 10.1097/00010694-200012000-00001.
  • Papadopoulos A, Bird NR, Whitmore AP, Mooney SJ. 2009. Investigating the effects of organic and conventional management on soil aggregate stability using X-ray computed tomography. Eur J Soil Sci. 60(3):360–368. doi: 10.1111/j.1365-2389.2009.01126.x.
  • Pronk GJ, Heister K, Ding GC, Smalla K, Kogel-Knabner I. 2012. Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations. Geoderma. 189-190:585–594. doi: 10.1016/j.geoderma.2012.05.020.
  • Qiu J. 2008. China: the third pole. Nature. 454(7203):393–396. doi: 10.1038/454393a.
  • Rabbi SMF, Minasny B, McBratney AB, Young LM. 2020. Microbial processing of organic matter drives stability and pore geometry of soil aggregates. Geoderma. 360:114033. doi: 10.1016/j.geoderma.2019.114033.
  • Rabot E, Wiesmeierb M, Schlütera S, Vogela HJ. 2018. Soil structure as an indicator of soil functions: a review. Geoderma. 314:122–137. doi: 10.1016/j.geoderma.2017.11.009.
  • Rumpel C, Kögel-Knabner I. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil. 338(1–2):143–158. doi: 10.1007/s11104-010-0391-5.
  • Sammartino S, Michel E and Capowiez Y. (2012). A Novel Method to Visualize and Characterize Preferential Flow in Undisturbed Soil Cores by Using Multislice Helical CT. Vadose Zone Journal, 11(1), 10.2136/vzj2011.0100
  • Shu XY, He J, Zhou ZH, Xia LL, Hu YF, Zhang YY, Luo YQ, Chu HY, Liu WJ, Yuan S, et al. 2022. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: a meta-analysis. Sci Total Environ. 829:154627. doi: 10.1016/j.scitotenv.2022.154627.
  • Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79(1):7–31. doi: 10.1016/j.still.2004.03.008.
  • Sun Y, Wu J, Shao Y, Zhou L, Mai B, Lin Y, Fu S. 2011. Responses of soil microbial communities to prescribed burning in two paired vegetation sites in southern China. Ecol Res. 26(3):669–677. doi: 10.1007/s11284-011-0827-2.
  • Tagar AA, Adamowski J, Memon MS, Do MC, Mashori AS, Soomro AS, Bhayo WA. 2020. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Tillage Res. 197:104494. doi: 10.1016/j.still.2019.104494.
  • Tejada M, Gonzalez JL. 2008. Influence of two organic amendments on the soil physical properties, soil losses, sediments and runoff water quality. Geoderma. 145(3–4):325–334. doi: 10.1016/j.geoderma.2008.03.020.
  • Thomas GW. 1996. Soil pH and soil acidity. In: Sparks DL, editor Methods of soil analysis. Part 3, chemical methods. Madison, WI: SSSA Book Series 5; pp. 475–490.
  • USS Working Group WRB. 2015). World reference base for soil resources 2014, update 2015: international soil classification system for naming soils and creating legends for soil maps. (World Soil Resources Rep. 106). FAO.
  • Wang XY, Bian Q, Jiang YJ, Zhu LY, Chen Y, Liang YT, Sun B. 2021. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol Biochem. 153:108062. doi: 10.1016/j.soilbio.2020.108062.
  • Wang R, Hu X. 2023. Pore structure characteristics and organic carbon distribution of soil aggregates in alpine ecosystems in the Qinghai Lake basin on the Qinghai-Tibet Plateau. Catena. 231:107359. doi: 10.1016/j.catena.2023.107359.
  • Wan W, Li X, Han S, Wang L, Luo X, Chen W, Huang Q. 2020. Soil aggregate fractionation and phosphorus fraction driven by long-term fertilization regimes affect the abundance and composition of P-cycling-related bacteria. Soil Tillage Res. 196:104475. doi: 10.1016/j.still.2019.104475.
  • Waring E, Licht M, Ripley E, Staudt A, Carlson S, Helmers M. 2022. Cover crop mixtures versus single species: water quality and cash crop yield. J Soil Water Conserv. 78(1):1–15. doi: 10.2489/jswc.2023.00174.
  • Williams A, Davis AS, Jilling A, Grandy AS, Koide RT, Mortensen DA, Smith RG, Snapp SS, Spokas KA, Yannarell AC. 2017. Reconciling opposing soil processes in row-crop agroecosystems via soil functional zone management. Agr Ecosyst Environ. 236:99–107. doi: 10.1016/j.agee.2016.11.012.
  • Xiao ZG, Rasmann S, Yue L, Lian F, Zou H, Wang ZY. 2019. The effect of biochar amendment on N-cycling genes in soils: a meta-analysis. Sci Total Environ. 696:133984. doi: 10.1016/j.scitotenv.2019.133984.
  • Yang F, Huang L M, Rossiter D G, Yang F, Yang R M and Zhang G L. (2017). Evolution of loess‐derived soil along a climatic toposequence in the Qilian Mountains, NE Tibetan Plateau. European J Soil Science, 68(3), 270–280. 10.1111/ejss.12425
  • Yang F, Zhang GL, Yang JL, Li DC, Zhao YG, Liu F, Yang RM, Yang F. 2014. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. J Hydrol. 519:3086–3093. doi: 10.1016/j.jhydrol.2014.10.054.
  • Ye GP, Banerjee S, He JZ, Fan JB, Wang ZH, Wei XY, Hu HW, Zheng Y, Duan CJ, Wan S, et al. 2021. Manure application increases microbiome complexity in soil aggregate fractions: results of an 18-year field experiment. Agr Ecosyst Environ. 307:107249. doi: 10.1016/j.agee.2020.107249.
  • Yilmaz E, Sonmez M. 2017. The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Tillage Res. 168:118–124. doi: 10.1016/j.still.2017.01.003.
  • Yoo GY, Nissen TM, Wander MM. 2006. Use of physical properties to predict the effects of Tillage Practices on organic matter dynamics in three Illinois soils. J Environ Qual. 35(4):1576–1583. doi: 10.2134/jeq2005.0225.
  • Young IM, Blanchart E, Chenu C, Dangerfield M, Fragoso C, Grimaldi M, Ingram J, Monrozier LJ. 1998. The interaction of soil biota and soil structure under global change. Glob Chang Biol. 4(7):703–712. doi: 10.1046/j.1365-2486.1998.00194.x.
  • Zaher H, Caron J, Ouaki B. 2005. Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability. Soil Sci Soc Am J. 69(1):1–1. doi: 10.2136/sssaj2005.0001.
  • Zhi J, Zhang G, Yang F, Yang R, Liu F, Song X, Zhao Y and Li D. (2017). Predicting mattic epipedons in the northeastern Qinghai-Tibetan Plateau using Random Forest. Geoderma Regional, 10 1–10. 10.1016/j.geodrs.2017.02.001
  • Zhou H, Fang H, Mooney SJ, Peng X. 2016. Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies. Geoderma. 266:66–74. doi: 10.1016/j.geoderma.2015.12.007.
  • Zhou X, Li C, Wu L, Lv J, Xie X, Wei J, Zhang Y. 2022. Responses of soil water retention to climate and underlying condition changes in river source areas: a case study of the Hei river basin and Bai river basin, China. J Soil Water Conserv. 77(6):555–567.
  • Zhou H, Peng XH, Perfect E, Xiao TQ, Peng GY. 2013. Effects of organic and inorganic fertilization on soil aggregation in an Ultisol as characterized by synchrotron based X-ray micro-computed tomography. Geoderma. 195-196:23–30. doi: 10.1016/j.geoderma.2012.11.003.