391
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mixing bamboo charcoal with vinasse fertilizer to remediate the phytotoxicity of quinclorac to tobacco

, , &
Pages 1-14 | Received 28 Apr 2023, Accepted 30 Nov 2023, Published online: 06 Dec 2023

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99:19–33. doi: 10.1016/j.chemosphere.2013.10.071.
  • Akhil D, Lakshmi D, Kartik A, Vo D-V, Arun J, Gopinath KP. 2021. Production, characterization, activation and environmental applications of engineered biochar: a review. Environ Chem Lett. 19(3):2261–2297. doi: 10.1007/s10311-020-01167-7.
  • Alonso FG, Mendes KF, Junqueira LV, Takeshita V, Almeida CDS, Tornisielo VL. 2020. Distribution and formation of degradation products of 14C-quinclorac in five tropical soils. Arch Agron Soil Sci. 66(11):1598–1609. doi: 10.1080/03650340.2019.1681589.
  • Cara IG, Țopa D, Puiu I, Jităreanu G. 2022. Biochar a promising strategy for pesticide-contaminated soils. Agriculture. 12(10):1579. doi: 10.3390/agriculture12101579.
  • Cederlund H, Börjesson E, Stenström J. 2017. Effects of a wood-based biochar on the leaching of pesticides chlorpyrifos, diuron, glyphosate and MCPA. J Environ Manage. 191:28–34. doi: 10.1016/j.jenvman.2017.01.004.
  • Cheng H, Tang G, Wang S, Rinklebe J, Zhu T, Cheng L, Feng S. 2022. Combined remediation effects of biochar and organic fertilizer on immobilization and dissipation of neonicotinoids in soils. Environ Int. 169:107500. doi: 10.1016/j.envint.2022.107500.
  • Cui H, Dong T, Hu L, Xia R, Jing Zhou Z, Zhou J. Adsorption and immobilization of soil lead by two phosphate-based biochars and phosphorus release risk assessment. Sci Total Environ. 2022 Jun. 824:153957. doi:10.1016/j.scitotenv.2022.153957.
  • Egamberdieva D, Jabbarov Z, Arora NK, Wirth S, Bellingrath-Kimura SD. 2021. Biochar mitigates effects of pesticides on soil biological activities. Environ Sustain. 4(2):335–342. doi: 10.1007/s42398-021-00190-w.
  • Gámiz B, Velarde P, Spokas KA, Cox L. 2019. Dynamic effect of fresh and aged biochar on the behavior of the herbicide mesotrione in soils. J Agric Food Chem. 67(34):9450–9459. doi: 10.1021/acs.jafc.9b02618.
  • Grossmann K. 2000. Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci. 5(12):506–508. doi: 10.1016/S1360-1385(00)01791-X.
  • Huang L, Li Y, Zhao M, Chao Y, Qiu R, Yang Y, Wang S. 2018. Potential of cassia alata L. Coupled with biochar for Heavy Metal Stabilization in multi-Metal mine tailings. Int J Environ Res Public Health. 15(3):494. doi: 10.3390/ijerph15030494.
  • Jatav HS, Rajput VD, Minkina T, Singh SK, Chejara S, Gorovtsov A, Barakhov A, Bauer T, Sushkova S, Mandzhieva S, et al. 2021. Sustainable approach and safe use of biochar and its possible consequences. Sustainability. 13(18):10362. doi: 10.3390/su131810362.
  • Kim J, Kwon Y-K, Kim JH, Heo S-J, Lee Y, Lee S-J, Shim W-B, Jung W-K, Hyun J-H, Kwon KK, et al. 2014. Effective microwell plate-based screening method for microbes producing cellulase and xylanase and its application. J Microbiol Biotechnol. 24(11):1559–1565. doi:10.4014/jmb.1405.05052.
  • Kiran BR, Prasad MNV. 2019. Biochar and rice husk ash assisted phytoremediation potentials of ricinus communis L. for lead-spiked soils. Ecotoxicol Environ Saf. 183:109574. doi: 10.1016/j.ecoenv.2019.109574.
  • Kul R, Arjumend T, Ekinci M, Yildirim E, Turan M, Argin S. 2021. Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Sci Plant Nutr. 67(6):693–706. doi: 10.1080/00380768.2021.1998924.
  • Liu T, Lawluvy Y, Shi Y, Ighalo JO, He Y, Zhang Y, Yap P-S. 2022. Adsorption of cadmium and lead from aqueous solution using modified biochar: a review. J Environ Chem Eng. 10(1):106502. doi: 10.1016/j.jece.2021.106502.
  • Liu Y, Lonappan L, Brar SK, Yang S. 2018. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci Total Environ. 645:60–70. doi: 10.1016/j.scitotenv.2018.07.099.
  • Luo D, Wang L, Nan H, Cao Y, Wang H, Kumar TV, Wang C. 2023. Phosphorus adsorption by functionalized biochar: a review. Environ Chem Lett. 21(1):497–524. doi: 10.1007/s10311-022-01519-5.
  • Mehmood S, Saeed DA, Rizwan M, Khan MN, Aziz O, Bashir S, Ibrahim M, Ditta A, Akmal M, Mumtaz MA, et al. 2018. Impact of different amendments on biochemical responses of sesame (sesamum indicum L.) plants grown in lead-cadmium contaminated soil. Plant Physiol Biochem. 132:345–355. doi: 10.1016/j.plaphy.2018.09.019.
  • Moerschbacher BM, Noll UM, Flott BE, Reisener H-J. 1988. Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines. Physiol Mol Plant Pathol. 33(1):33–46. doi: 10.1016/0885-5765(88)90041-0.
  • Rafique M, Sultan T, Ortas I, Chaudhary HJ. 2017. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Sci Plant Nutr. 63(5):460–469. doi: 10.1080/00380768.2017.1373599.
  • Saba Y, Asadpour R, Kamyab H, Sara Y, Kutty SRM, Baloo L, TSBA M, Chelliapan S, Sidik ABC. 2022. Efficiency of carbon sorbents in mitigating polar herbicides leaching from tropical soil. Clean Technol Environ Policy. 24(1):251–260. doi: 10.1007/s10098-021-02113-z.
  • Saba Y, Kamyab H, Abd Manan TS B, Chelliapan S, Asadpour R, Sara Y, Sapari NB, Baloo L, Sidik ABC, Kirpichnikova I. 2022. Bio-efficacy of imidazolinones in weed control in a tropical paddy soil amended with optimized agrowaste-derived biochars. Chemosphere. 303:134957. doi: 10.1016/j.chemosphere.2022.134957.
  • Wang N, Xue X-M, Juhasz AL, Chang Z-Z, Li H-B. 2017. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ Pollut. 220:514–522. doi: 10.1016/j.envpol.2016.09.095.
  • Wei XN, Liu Y , Tang YL. 2018. Nicotine content of tobacco leaf estimated by UV spectrum. IOP Conf Ser Earth Environ Sci. 185(1):012017. doi: 10.1088/1755-1315/185/1/012017.
  • Yang J, Zang W, Zhang Z, Wang P, Yang Q. 2019. The enhanced and tunable sustained release of pesticides using activated carbon as a carrier. Materials. 12(23):4019. doi: 10.3390/ma12234019.
  • Yan P, Zou Z, Li X, Liping Z, Lan Z, Fu J, Wenyan H. 2022. Biochar changed the distribution of imidacloprid in a plant–soil–groundwater system. Chemosphere. 307:136213. doi: 10.1016/j.chemosphere.2022.136213.
  • Yavari S, Kamyab H, Asadpour R, Yavari S, Sapari NB, Baloo L, Manan TSBA, Ashokkumar V, Chelliapan S. 2023. The fate of imazapyr herbicide in the soil amended with carbon sorbents. Biomass Conv Bioref. 13(9):7561–7569. doi: 10.1007/s13399-021-01587-7.
  • Yelverton FH, Worsham AD, Peedin GF. 1992. Activated Carbon Reduces Tobacco (Nicotiana tabacum) Injury from Soil-Applied Herbicides. Weed Technol. 6(2):310–316. doi: 10.1017/S0890037X00034783.
  • Younis U, Malik SA, Rizwan M, Qayyum MF, Ok YS, Shah MHR, Rehman RA, Ahmad N. 2016. Biochar enhances the cadmium tolerance in spinach (Spinacia oleracea) through modification of cd uptake and physiological and biochemical attributes. Environ Sci Pollut Res. 23(21):21385–21394. doi: 10.1007/s11356-016-7344-3.
  • Zhang J, Kirkham MB. 1994. Drought-stress-induced changes in activities of superoxide dismutase, Catalase, and peroxidase in wheat species. Plant Cell Physiol. 35(5):785–791. doi: 10.1093/oxfordjournals.pcp.a078658.
  • Zhong Q, Wan S, Shen C, Liu Y. 2018. Decay of quinclorac in acidic paddy soil and risk evaluation to the subsequent Crop, tobacco (nicotiana tabacum L.). Bull Environ Contam Toxicol. 101(2):284–287. doi: 10.1007/s00128-018-2372-y.