147
Views
0
CrossRef citations to date
0
Altmetric
Articles

Using fallout 137Cs and OSL as sediment tracers in badlands: a case study of Tepezalá volcano (Central Mexico)

, , , , &
Pages 27-46 | Received 08 Nov 2021, Accepted 20 Jan 2023, Published online: 06 Feb 2023

References

  • Aitken MJ. 1995. Thermoluminescence dating: past progress and future trends. Nuclear Tracks. 10:3–6.
  • Aitken MJ. 1998. An introduction to optical dating. In: The dating of quaternary sediments by the use of photon-stimulated luminescence. New York: Oxford University Press; p. 280.
  • Aitken MJ. 1999. Archaeological dating using physical phenomena. Rep Prog Phys. 62:1333–1376.
  • Ananda J, Herath G. 2003. Soil erosion in developing countries: a socio-economic appraisal. J Environ Manag. 68:343–353.
  • Bateman MD, Bouter CH, Carr AS, Frederick CD, Peter D, Wilder M. 2007. Preserving the palaeoenvironmental record in Drylands: Bioturbation and its significance for luminescence-derived chronologies. Sediment Geol. 195:5–19.
  • Bateman MD, Frederick CD, Jaiswal MK, Singhvi AK. 2003. Investigations into the potential effects of pedoturbation on luminescence dating. Quat Sci Rev. 22:1169–1176.
  • Benmansour M, Mabit L, Nouira A, Moussadek R, Bouksirate H, Duchemin M, Benkdad A. 2013. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex. J Environ Radioact. 115:97–106.
  • Berger GW, Huntley DJ. 1994. Tests for optically stimulated luminescence from Tephar glass. Quat Sci Rev. 13:509–511.
  • Bishop P, Muñoz-Salinas E, Mackenzie AB, Pulford I. 2010. The character, volume and implications of sediment impounded in mill dams in Scotland: The case of the Baldernock Mill dam in East Dunbartonshire. Earth and Environ Sci Trans Royal Society of Edinburgh. 101(2):97–110. doi:10.1017/S1755691010009205
  • Bishop P, Sanderson D, Hansom J, Chaimanee N. 2005. Age-dating of tsunami deposits: lessons from the 26 December 2004 tsunami in Thailand. Geogr J. 171:379–384.
  • Bryan RB, Yair A. 1982. Badlands geomorphology and piping. Noruega: GeoBooks.
  • Cao Z, Jiang Y, Xu J, Zhao J, Zhao C. 2022. Luminiscence sensitivity of quartz from rocks under in situ chemical weathering conditions. Front Earth Sci. 10. doi:10.3389/feart.2022.940212
  • Caraballo-Arias NA, Conoscenti C, Ferro V. 2014. Testing GIS-morphometric analysis of some Sicilian badlands. CATENA. 113:370–376.
  • Castaldi F, Chiocchini U. 2012. Effects of land use changes on badland erosion in clayey drainage basins, Radicofani, Central Italy. Geomorphology. 169-170:98–108.
  • Castillo M, Muñoz-Salinas E, Arce JL, Roy PD. 2017. Early Holocene to present landscape dynamics of the tectonic lakes of west-central Mexico. J South Amer Earth Sci. 80:120–130.
  • Ciccaci S, Galiano M, Roma MA, Salvatore MC. 2008. Morphological analysis and erosion rate evaluation in badlands of Radicofani area (Southern Tuscany-Italy). Catena. 74:87–97.
  • Clarke ML, Rendell M. 2000. The impact of the farming practice of remodeling hillslope topography on badland morphology and soil erosion processes. CATENA. 40:229–250.
  • Dai C, Liu Y, Wang T, Li Z, Zhou Y. 2018. Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agric Water Manag. 210:41–48.
  • Desir G, Marín C. 2013. Role of erosion processes on the morphogenesis of a semiarid badland area Bardenas reales (NE Spain). Catena. 106:83–92.
  • Di Stefano C, Ferro V, Porto P. 2000a. Applying the bootstrap technique for studying soil redistribution by caesium-137 measurements at basin scale. J Hydrological Sci. 45:171–183.
  • Di Stefano C, Ferro V, Rizzo S. 2000b. Assessing soil erosion in a small Sicilian basin by caesium-137 measurements and a simplified mass balance model. J Hydrolog Sci. 45:817–832.
  • Duller GA. 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matter in luminescence dating. Boreas. 37:589–612.
  • Evrard O, Chaboche P-A, Ramon R, Foucher A, Laceby JP. 2020. A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology. 362:107103.
  • Fairbridge RW. 1968. Encyclopedia of geomorphology. New York: Reinhold Book.
  • Fattahi M, Stokes S. 2003. Dating volcanic and related sediments by luminescence methods: a review. Earth Sci Rev. 62:229–264.
  • Forrest B, Rink WJ, Bicho N, Ferring CR. 2003. OSL ages and possible bioturbation signals at the Upper Paleolithic site of Lagoa do Bordoal, Algarve, Portugal. Quat Sci Rev. 22:1279–1285.
  • Gallart F, Marignani M, Pérez-Gallego N, Santi E, Maccherini S. 2013. Thirty years of studies on badlands, from physical to vegetational approaches. A Succinct Review. Catena. 106:4–11.
  • Gallart F, Pérez-Gallego N, Latron J, Catari G, Martínez-Carreras N, Nord G. 2013. Short- and long-term studies of sediment dynamics in a small humid mountain Mediterranean basin with badlands. Geomorphology. 196:242–251.
  • Gharibreza M, Zaman M, Porto P, Fulajtar E, Parsaei L, Eisaei H. 2020. Assessment of deforestation impact on soil erosion in loess formation using 137Cs method (case study: Golestan province. Int Soil and Water Conserv Res. 8:393–405.
  • Gholami V, Sahour H, Ali M, Amri H. 2021. Soil erosion modeling using erosion pins and artificial neural networks. CATENA. 196:104902.
  • Gray HJ, Tucker GE, Mahan SA, McGuire C, Rhodes EJ. 2017. On extracting sediment transport information from measurements of luminescence in river sediment. J. Geophys Res: Earth Surf. doi:10.1002/2016JF003858.
  • Grum B, Assefa D, Hessel R, Woldearegay K, Kessler A, Ritsema C, Geissen V. 2017. Effect of in situ water harvesting techniques on soil and nutrient losses in semi-arid Northern Ethiopia. Land Degr Dev. 28:1016–1027.
  • Hanson PR, Mason JA, Jacobs PM, Young AR. 2015. Evidence for bioturbation of luminescence signals in eolian sand on upland ridgetops, southeastern Minnesota, USA. Quat Int. 362:108–115.
  • He Q, Walling DE. 1997. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils. Appl Radiat Isot. 48:677–690.
  • Hernández Sánchez JM, Fernández Reynoso DS, Martínez Menez MR, Figueroa Sandoval B, Rubio Granados E, García Rodríguez JL. 2009. Evaluación de la estabilidad de taludes en cárcavas, Huasca de Ocampo, Hidalgo, México. Tierra Latinoamericana. 37:303–313.
  • Horn HG, Bonka H, Maqua M. 1987. Measured particle bound activity size-distribution, deposition velocity, and activity concentration in rainwater after the Chernobyl accident. J Aerosol Sci. 18:681–684. doi:10.1016/0021-8502(87)90096-6.
  • Howard AD. 1994. Badlands. In: Abrahams A.D., Parsons A.J., editors. Geomorphology of desert environments. London: Chapman & Hall; p. 213–242.
  • Hulugalle N. 1987. Effect of tied ridges on soil water content, evapotranspiration, root growth and yield of cowpeas in the Sudan Savanna of Burkina Faso. Field Crops Res. 17:219–228.
  • Huntley DJ, Godfrey-Smith DI, Thewalt MLW. 1985. Optical dating of sediments. Nature. 313:105–107.
  • Kinama JM, Stigter CJ, Ong CK, Ng’ang’a JK, Gichuki FN. 2007. Contour hedgerows and grass strips in erosion and runoff control on sloping land in semi-arid Kenya. Arid Land Res Manag. 21:1–19.
  • King GE, Sanderson DCW, Robinson RAJ, Finch AA. 2014. Understanding processes of sediment beaching in glacial settings using a portable OSL reader. Boreas. 43:955–972.
  • Kinnaird TC, Sanderson DCW, Woodward NL. 2012. Applying luminescence methods to geoarchaelogy: a case study from Stronsay, Orkney. Earth and Environ Sci Trans Royal Sciety of Edinburgh. 102:191–200.
  • La Manna L, Gaspar L, Tarabini M, Quijano L, Navas A. 2019. 137Cs inventories along a climatic gradient in volcanic soils of Patagonia: potential use for assessing medium term erosion processes. CATENA. 181:104089.
  • Lan J, Wang T, Chawchai S, Cheng P, Zhou K, Yu K, Yan D, Wang Y, Zang J, Liu Y, et al. 2020. Time marker of 137Cs fallout maximum in lake sediments of Northwest China. Quat Sci Rev. 241:106413.
  • Li P, Gong Y, Komatsuzaki M. 2019. Temporal dynamics of 137Cs distribution in soil and soil-to-crop transfer factor under different tillage systems after the Fukushima Daiichi Nuclear Power Plant accident in Japan. Sci Total Environ. 697:134060.
  • Llena M, Batalla RJ, Smith MW, Vericat D. 2021. Do badlands (always) control sediment yield? evidence from a small intermittent catchment. CATENA. 198:105015. doi:10.1016/j.catena.2020.105015.
  • López Blanco J, Palacio Prieto JL. 1995. Cuantificación del crecimiento de las áreas erosionadas en cabeceras de cárcavas procesando imágenes de video. Investigaciones Geográficas Boletín. 3:77–100.
  • López-Tarazón JA, Batalla RJ, Vericat D, Francke T. 2009. Suspended sediment transport in a highly erodible catchment: The River Isábena (Southnern Pyrenees). Geomorphology. 109:210–221.
  • Loughran LJ, Elliott GL, Campbell BL, Shelly DJ, 1988. Estimation of soil erosion from caesium-137 measurements in a small, cultivated catchment in Australia. Int J Radiat Appl Instrument Part A: Appl Radiat Isotopes. 39:1153–1157. doi:10.1016/0883-2889(88)90009-3.
  • McCloskey GL, Wasson RJ, Boggs GS, Douglas M. 2016. Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: management implications. Geomorphology. 266:96–104.
  • Meliho M, Nouira A, Benmansour M, Boulmane M, Khattabi A, Mhammdi N, Benkdad A. 2019. Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J Environ Radioact. 208–209:106021.
  • Molina-Mendoza JL, Galván-Villanueva R, Patiño-Siciliano A, Fernández-Nava R. 2012. Plantas medicinales y listado florístico preliminar del municipio de Huasca de Ocampo, Hidalgo, México. Polibotanica. 34:239–271.
  • Mongil-Manso J, Navarro-Hevia J, Díaz-Gutiérrez V, Cruz-Alonso V, Ramos-Díez V. 2016. Badlands forest restoration in Central Spain after 50 years under a Mediterranean-continental climate. Ecol Eng. 97:313–326.
  • Moreno-de las Heras M, Gallart F. 2016. Lithology controls the regional distribution and morphological diversity of montane Mediterranean badlands in the upper Llobregat basin (eastern Pyrenees). Geomorphology. 273:107–115.
  • Muñoz-Salinas E, Bishop P, Sanderson DCW, Zamorano JJ. 2012. Interpreting luminescence data from a portable OSL reader: three case studies in fluvial settings. Earth Surf Processes Landforms. 36:651–660.
  • Muñoz-Salinas E, Castillo M. 2018. Assessing conservation practices in Amalacaxco Gorge (Izta-Popo National Park, Central Mexico) using fallout 137Cs and Optically Stimulated Luminescence (OSL). J Mt Sci. 15:447–460.
  • Muñoz-Salinas E, Castillo M, Franco-Ramos O, Arce JL, Sanderson D, Cresswell AC. 2020. Assessing paraglacial processes at Nexpayantla Gorge (Popocatépetl volcano, central Mexico) using OSL and 14C. Earth Surf Proc Landforms. 45:2450–2462.
  • Munyikwa K, Kinnaird TC, Sanderson CW. 2020. The potential of portable luminescence readers in geomorphological investigations: a review. Earth Surf Processes Landforms. doi: 10.1002/esp.4975.
  • Nadal-Romero E, Regüs D, Latron J. 2008. Relationships among rainfall, runoff, and suspended sediment in a small catchment with badlands. Catena. 74:127–136.
  • Nadal-Romero E, Vicente-Serrano SM, Jiménez I. 2012. Assessment of badland dynamics using multi-temporal landsat imagery: An example from the Spanish pre-Pyrenees. CATENA. 96:1–11.
  • Navas A, Machín J, Soto J. 2005. Assessing soil erosion in a Pyrenean mountain catchment using GIS and fallout 137Cs. agriculture. Ecosys Env. 105:493–506.
  • O’Gorman K, Tanner D, Sontag-González M, Brink F, Jones BG, Dosseto A, Jatmiko, Roberts RG, Jacobs Z. 2021. Composite grains from volcanic terranes: Internal dose rates of supposed ‘potassium-rich’ feldspar grains used for optical dating at Liang Bua, Indonesia. Quat Geochronol. 64:101182.
  • Okeyo A, Mucheru-Muna M, Mugwe J, Ngetich K, Mugendi DN, Diels J, Shisanya C. 2014. Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya. Agricultura Water Management. 137:52–58.
  • Paganos P, Borrelli P, Poesen J, Ballabio C, Lugato E, Metsburger K, Montanarella L. 2015. The new assessment of soil loss by water erosion in Europe. Env Sci Polic. 54:438–447.
  • Palacio JL, Vázquez L. 1990. Relative importance of modelling processes on badland slopes. An example in Central Mexico. Zeitschrift für Geomorphology. 34:301–306.
  • Palacio Prieto JL. 1990. Determinación de áreas de erosión potencial en cárcavas: Un ejemplo en el centro de México. Investigaciones Geográficas. 21:45–55.
  • Parsons AJ, Foster IDL. 2011. What can we learn about soil erosion from the use of 137Cs? Earth Sci Rev. 108:101–113. doi:10.1016/j.earscirev.2011.06.004.
  • Pöllänen R, Valkama I, Toivonen H. 1997. Transport of radioactive particles from the Chernobyl accident. Atmos Environ. 31:3575–3590. doi:10.1016/S1352-2310(97)00156-8.
  • Poreba GJ. 2006. Caesium-137 as a soil erosion tracer: A review. Geochronometria. 25:37–46.
  • Portenga EW, Bishop P, Rood DH, Bierman PR. 2017. Combining bulk sediment OSL and meteoric 10Be fingerprinting techniques to identify gully initiation sites and erosion depths. J Geophys Res: Earth Surf. doi:10.1002/2016JF004052.
  • Porto P, Callegari G. 2021. Using 137Cs measurements to estimate soil erosion rates in forest stands affected by wildfires. results from plot experiments. Appl Radiat Isot. 172:109668.
  • Porto P, Walling DE, Ferro V. 2001. Validating the use of caesium-137 measurements to estimate soil erosion rates in a small drainage basin in Calabria, Southern Italy. J Hydrol. 248:93–108.
  • Porto P, Walling DE, Ferro V, Di Stefano C. 2003. Validating erosion rate estimates by caesium-137 measurements for two small forested catchments in Calabria. Southern Italy. Land Degradation and Development. 14:389–408.
  • Prosdocimi M, Cerdà A. 2016. Mulching practices for reducing soil water erosion: a review. Earth Sci Rev. 161:191–203.
  • Ritchie JC, McHenry R. 1975. Fallout Cs-137: a tool in conservation research. J Soil Water Conserv. 30:283–286.
  • Ritchie JC, McHenry R. 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J Environ Qual. 19:215–233.
  • Romero-Díaz A, Ruíz-Sinoga JD, Belmonte-Serrato F. 2020. Physical-chemical and mineralogical properties of parent materials and their relationship with the morphology of badlands. Geomorphology. 354:107047. doi:10.1016/j.geomorph.2020.107047.
  • Sanderson DCW, Murphy S. 2010. Using simple portable OSL measurements and laboratory characterization to help understand complex and heterogeneous sediment sequences for luminescence dating. Quat Geochronol. 5:299–305.
  • Shinonaga T, Schummack W, Gerzabek MH. 2005. Vertical migration of 60Co, 137Cs and 226Ra in agricultural soils as observed in lysimeters under crop rotation. J Environ Radioact. 79:93–106.
  • Simms A, Woodroffe CD, Jones BG, Heijnis H. 2008. Assessing soil remobilization in catchments using a 137 Cs-sediment hillslope model. Aust Geogr. 39:445–465. doi:10.1080/00049180802419187.
  • Stand DM, Rhodes EJ, Heimsath AM. 2012. Assessing soil mixing processes and rates using a portable OSL-IRSL reader; preliminary determinations. Quat Geochronol. 10:314–319.
  • Stone AEC, Bateman MD, Thomas DSG. 2015. Rapid age assessment in the Namibia Sand Sea using a portable luminescence reader. Quat Geochronol. 30:134–140.
  • Su Z-A, Zhou T, Zhang X-B, Wang X-Y, Wang J-J, Zhou M-H, He Z-Y, Zhang R-C. 2021. A preliminary study of the impacts of shelter forest on soil erosion in cultivated land: evidence from integrated 137Cs and 210Pbex measurements. Soil and Tillage Research. 206:104843.
  • Terranova O, Antronico L, Coscarelli R, Laquinta P. 2009. Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology. 112:228–245.
  • Torri D, Rossi M, Brogi F, Marignani M, Bacaro G, Santi E, Tordoni E, Amici V, Macchereni S. 2018. Badlands and the dynamics of human history, land use, and vegetation through centuries. In: Nadal-Romero E., Martínez-Murillo J.F., Kuhn N.J, editor. Badland dynamics in the context of global change. Netherlands: Elsevier; p. 111–153.
  • Torri D, Santi E, Marignani M, Rossi M, Borselli L, Maccherini S. 2013. The recurring cycles of biancana badlands: Erosion, vegetation and human impact. Catena. 106:22–30.
  • Van Zuidam R. 1985. Aerial photo-interpretation in terrain analysis and geomorphological mapping. The Hague, The Netherlands: Smits Publisher. p. 44.
  • Vazquez-Selem L, Zinck JA. 1994. Modelling gully distribution on volcanic terrains in the Huasca area, central Mexico. ITC J. 1994-3:238–251.
  • Vergari F, Della Seta M, Del Monte M, Barbieri M. 2013. Badlands denudation ‘hot spots’: The role of parent material properties on geomorphic processes in 20-years monitored sites of Southern Tuscany (Italy). Catena. 106:31–41.
  • Vericat D, Smith MW, Brasington J. 2014. Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys. CATENA. 120:164–176.
  • Walling DE, Bradley SB. 1988. The use of caesium-137 measurements to investigate sediment delivery from cultivated areas in Devon, UK. Sediment budgets (proceedings of the porto alegre symposium). IAHS Publ. 174:325–335.
  • Wei L, Kinouchi T, Yoshimura K, Velleux ML, 2017. Modelling watershed-scale 137Cs transport in a forested catchment affected by the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioact. 171:21–33. doi:10.1016/j.jenvrad.2017.01.017.
  • Wintle AG. 1973. Anomalous fading of thermoluminescence in mineral samples. Nature. 245:143–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.