197
Views
1
CrossRef citations to date
0
Altmetric
Articles

Establishing a record of extreme debris flow events in a high Alpine catchment since the end of the Little Ice Age using lichenometric dating

ORCID Icon, , ORCID Icon, , , , & show all
Pages 47-63 | Received 13 Nov 2022, Accepted 24 Feb 2023, Published online: 13 Mar 2023

References

  • Armstrong R. 2002. The effect of rock surface aspect on growth, size structure and competition in the lichen Rhizocarpon geographicum. Environ Exp Bot. 48:187–194. doi:10.1016/S0098-8472(02)00040-0.
  • Armstrong RA. 2011. The biology of the crustose lichen Rhizocarpon geographicum. Symbiosis. 55:53–67. doi:10.1007/s13199-011-0147-x.
  • Armstrong RA. 2015. Lichen growth and lichenometry. In: Upreti DK, Divakar PK, Shukla V, Bajpai R, editors. Recent advances in lichenology. New Delhi: Springer India; p. 213–227.
  • Armstrong RA. 2016. Lichenometric dating (lichenometry) and the biology of the lichen genus rhizocarpon: challenges and future directions. Geogr Ann A: Phys Geogr. 98:183–206. doi:10.1111/geoa.12130.
  • Becht M. 1995. Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten: Mit 40 Tabellen [Zugl.: München, Univ., Habil.-Schr]. München: Geobuch-Verl. 187 p. (Münchener Universitätsschriften / Fakultät für Geowissenschaften; vol. 47). ISBN: 3-925308-69-5 . ger. http://edoc.ku-eichstaett.de/9396/.
  • Benedict JB. 1988. Techniques in Lichenometry: identifying the yellow Rhizocarpons. Arct Alp Res. 20:285–291. doi:10.2307/1551260.
  • Benedict JB. 1990. Lichen mortality due to late-lying snow: results of a transplant study. Arct Alp Res. 22:81. doi:10.2307/1551722.
  • Bennett GL, Molnar P, Eisenbeiss H, McArdell BW. 2012. Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben. Earth Surf Process Landf. 37:1627–1640. doi:10.1002/esp.3263.
  • Bernhardt H, Reiss D, Hiesinger H, Hauber E, Johnsson A. 2017. Debris flow recurrence periods and multi-temporal observations of colluvial fan evolution in central Spitsbergen (Svalbard). Geomorphology. 296:132–141. doi:10.1016/j.geomorph.2017.08.049.
  • Berti M, Bernard M, Gregoretti C, Simoni A. 2020. Physical interpretation of rainfall thresholds for runoff-generated debris flows. J Geophys Res Earth Surf. 125. doi:10.1029/2019JF005513.
  • Beschel RE. 1950. Flechten als Altersmaßstab rezenter Moränen. Zeitschrift Gletscherkunde Glazialgeologie. 1:152–161.
  • Beschel RE. 1957. Lichenometrie im Gletschervorfeld. Jahrbuch des Vereins zum Schutze der Alpenpflanzen und -Tiere. 22:164–185.
  • Beschel RE. 1973. Lichens as a measure of the age of recent moraines. Arct Alp Res. 5:303–309. doi:10.1080/00040851.1973.12003739.
  • Bollschweiler M, Stoffel M. 2010. Changes and trends in debris-flow frequency since AD 1850: results from the Swiss Alps. The Holocene. 20:907–916. doi:10.1177/0959683610365942.
  • Bollschweiler M, Stoffel M, Schneuwly DM. 2008. Dynamics in debris-flow activity on a forested cone — a case study using different dendroecological approaches. CATENA. 72:67–78. doi:10.1016/j.catena.2007.04.004.
  • Bradwell T. 2009. Lichenometric dating: a commentary, in the light of some recent statistical studies. Geogr Ann A: Phys Geogr. 91:61–69. doi:10.1111/j.1468-0459.2009.00354.x.
  • Bull WB. 2009. Lichenometry dating of coseismic changes to a New Zealand landslide complex. Ann Geophys. 46. doi:10.4401/ag-3451.
  • Bull WB. 2018. Accurate surface exposure dating with lichens. Quat Res. 90:1–9. doi:10.1017/qua.2018.7.
  • Caseldine C. 1991. Lichenometric dating, lichen population studies and holocene glacial history in Tröllaskagi, Northern Iceland. In: Maizels JK, Caseldine C, editors. Environmental change in Iceland: past and present. Vol. 7. Dordrecht: Springer; p. 219–233 (Glaciology and Quaternary Geology; vol. 7).
  • Clayden SR, Pentecost A, Dawson RJM. 2004. Growth of the lichen Rhizocarpon lecanorinum, with comments on Aplin-Hill and lichenometric curves. Symbiosis. 37:379–393.
  • Dąbski M. 2007. Testing the size-frequency-based lichenometric dating curve on Fláajökull moraines (SE Iceland) and quantifying lichen population dynamics with respect to stone surface aspect. Jökull. 57:21–35.
  • De Haas T, Densmore AL, Stoffel M, Suwa H, Imaizumi F, Ballesteros-Cánovas JA, Wasklewicz T. 2018. Avulsions and the spatio-temporal evolution of debris-flow fans. Earth Sci Rev. 177:53–75. doi:10.1016/j.earscirev.2017.11.007.
  • Dietrich A, Krautblatter M. 2017. Evidence for enhanced debris-flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria). Geomorphology. 287:144–158. doi:10.1016/j.geomorph.2016.01.013.
  • Dowling CA, Santi PM. 2014. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards. 71:203–227. doi:10.1007/s11069-013-0907-4.
  • Fischer A, Seiser B, Stocker Waldhuber M, Mitterer C, Abermann J. 2015. Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria. The Cryosphere. 9:753–766. doi:10.5194/tc-9-753-2015.
  • Geitner C. 1999. Sedimentologische und vegetationsgeschichtliche Untersuchungen an fluvialen Sedimenten in den Hochlagen des Horlachtales (Stubaier Alpen/Tirol). München: Geobuch-Verlag (Münchener Geographische Abhandlungen).
  • Graber A, Santi P. 2022. Inferring rockfall frequency-magnitude relationships and talus accumulation times from lichenometric study of talus deposits, Glenwood Canyon, CO, USA. Geomorphology. 108253. doi:10.1016/j.geomorph.2022.108253.
  • Heckmann T, Haas F, Morche D, Schmidt K, Rohn J, Moser M, Leopold M, Kuhn M, Briese C, Pfeifer N, et al. 2012. Investigating an Alpine proglacial sediment budget using field measurements, airborne and terrestrial LiDAR data. IAHS Publ. 356:438–447.
  • Heiser M, Schlögl M, Spangl B, Fuchs S, Rickenmann D, Zimmermann M, Scheidl C. 2023. Repose time patterns of debris-flow events in alpine catchments. Earth Surf Process Landf. doi:10.1002/esp.5533.
  • Helsen MM, Koop PJM, van Steijn H. 2002. Magnitude-frequency relationship for debris flows on the fan of the Chalance torrent, Valgaudemar (French Alps). Earth Surf Process Landf. 27:1299–1307. doi:10.1002/esp.412.
  • Heuberger H. 1967. Gletschergeschichtliche Untersuchungen in den Zentralalpen Zwischen Sellrain- und Otztal. Geogr J. 133:522. doi:10.2307/1794493.
  • Hilger L. 2017. Quantification and regionalization of geomorphic processes using spatial models and high-resolution topographic data: A sediment budget of the Upper Kauner Valley, Ötztal Alps [PhD thesis]. Eichstätt-Ingolstadt: Katholische Universität Eichstätt-Ingolstadt. urn://nbn:de:bvb:824-opus4-3814.
  • Innes JL. 1983. Lichenometric dating of debris-flow deposits in the Scottish Highlands. Earth Surf Process Landf. 8:579–588. doi:10.1002/esp.3290080609.
  • Innes JL. 1985. Lichenometric dating of debris-flow deposits on alpine colluvial fans in Southwest Norway. Earth Surf Process Landf. 10:519–524. doi:10.1002/esp.3290100510.
  • Jochimsen M. 1966. Ist die Grösse des Flechtenthallus wirklich ein brauchbarer Masstab zur Datierung von glazialmorphologischen Relikten. Geogr Ann A: Phys Geogr. 48:157–164.
  • Jomelli V, Brunstein D, Grancher D, Pech P. 2007. Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Clim Change. 85:119–137. doi:10.1007/s10584-006-9209-0.
  • Jonasson C, Kot M, Kotarba A. 1991. Lichenometrical studies and dating of debris flow deposits in the high Tatra Mountains, Poland. Geogr Ann A: Phys Geogr. 73:141–146. doi:10.1080/04353676.1991.11880339.
  • Kapusta J, Stankoviansky M, Boltižiar M. 2010. Changes in activity and geomorphic effectiveness of debris flows in the High Tatra Mts within the last six decades (on the example of the Velická Dolina and Dolina Zeleného Plesa valleys). Studia Geomorphologica Carpatho-Balcanica. 44:5–34.
  • Karlén W. 1973. Holocene glacier and climatic variations, Kebnekaise Mountains, Swedish Lapland. Geogr Ann A: Phys Geogr. 55:29–63. doi:10.1080/04353676.1973.11879879.
  • Kędzia S. 2015. Lichenometric curves for the Polish part of the Karkonosze and Tatra Mountains established with a new method. Zeitschrift Geomorphologie. 59:103–118. doi:10.1127/0372-8854/2014/0141.
  • Kiefer C, Oswald P, Moernaut J, Fabbri SC, Mayr C, Strasser M, Krautblatter M. 2021. A 4000-year debris flow record based on amphibious investigations of fan delta activity in Plansee (Austria, Eastern Alps). Earth Surf Dynam. 9:1481–1503. doi:10.5194/esurf-9-1481-2021.
  • Lopez Saez J, Corona C, Stoffel M, Gotteland A, Berger F, Liébault F. 2011. Debris-flow activity in abandoned channels of the Manival torrent reconstructed with LiDAR and tree-ring data. Nat Hazards Earth Syst Sci. 11:1247–1257. doi:10.5194/nhess-11-1247-2011.
  • Loso MG, Doak DF. 2006. The biology behind lichenometric dating curves. Oecologia. 147:223–229. Epub 2005 Oct 20. doi:10.1007/s00442-005-0265-3.
  • McCarthy DP. 2021. A simple test of lichenometric dating using bidecadal growth of rhizocarpon geographicum agg. and structure-from-motion photogrammetry. Geomorphology. 385:107736. doi:10.1016/j.geomorph.2021.107736.
  • Orombelli G, Porter SC. 1983. Lichen growth curves for the Southern Flank of the Mont Blanc Massif, Western Italian Alps. Arct Alp Res. 15:193–200.
  • Osborn G, McCarthy D, LaBrie A, Burke R. 2015. Lichenometric dating: science or pseudo-science? Quat Res. 83:1–12. doi:10.1016/j.yqres.2014.09.006.
  • Papathoma-Köhle M, Keiler M, Totschnig R, Glade T. 2012. Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol. Nat Hazards. 64:2083–2105. doi:10.1007/s11069-012-0105-9.
  • Pech P, Jomelli V, Baumgart-Kotarba M, Bravard JP, Chardon M, Jacob N, Kedzia S, Kotarba A, Raczkowska Z, Tsao C. 2003. A lichenometric growth curve in the French Alps: Ailefroide and Veneon valleys; Massif des Ecrins. Geodinamica Acta. 16:187–193. doi:10.1016/j.geoact.2003.07.001.
  • Pelfini M, Santilli M. 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology. 101:721–730. doi:10.1016/j.geomorph.2008.04.002.
  • Proctor MCF. 1983. Sizes and growth-rates of thalli of the lichen Rhizocarpon geographicum on the moraines of the Glacier de Valsorey, Valais, Switzerland. The Lichenologist. 15:249–261. https://www.cambridge.org/core/journals/lichenologist/article/sizes-and-growthrates-of-thalli-of-the-lichen-rhizocarpon-geographicum-on-the-moraines-of-the-glacier-de-valsorey-valais-switzerland/ee72ae0afa94e56b3ccecc6e869aa5a0.
  • Rapp A, Nyberg R. 1981. Alpine debris flows in northern scandinavia. Geogr Ann A: Phys Geogr. 63:183–196. doi:10.1080/04353676.1981.11880033.
  • Rieger D. 1999. Bewertung der naturräumlichen Rahmenbedingungen für die Entstehung von Hangmuren: Möglichkeiten zur Modellierung des Murpotentials; mit 21 Tabellen [Zugl.: München, Univ., Diss., 1998]. München: Geobuch-Verl. 149 p. (Münchener Universitätsschriften / Fakultät für Geowissenschaften; vol. 51). ISBN: 3925308733 . ger.
  • Rodbell DT. 1992. Lichenometric and radiocarbon dating of holocene glaciation, Cordillera Blanca, Perú. The Holocene. 2:19–29. doi:10.1177/095968369200200103.
  • Rom J, Haas F, Heckmann T, Altmann M, Fleischer F, Ressl C, Betz-Nutz S, Becht M. 2023. Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria based on orthophotos and LiDAR data since 1947. Nat Hazards Earth Syst Sci. 23:601–622. doi:10.5194/nhess-23-601-2023.
  • Rosenwinkel S, Korup O, Landgraf A, Dzhumabaeva A. 2015. Limits to lichenometry. Quat Sci Rev. 129:229–238. doi:10.1016/j.quascirev.2015.10.031.
  • Sass O. 2010. Spatial and temporal patterns of talus activity – a lichenometric approach in the stubaier Alps, Austria. Geogr Ann A: Phys Geogr. 92:375–391. doi:10.1111/j.1468-0459.2010.00402.x.
  • Šilhán K, Pánek T, Hradecký J, Stoffel M. 2015. Tree-age control on reconstructed debris-flow frequencies: examples from a regional dendrogeomorphic reconstruction in the Crimean Mountains. Earth Surf Process Landf. 40:243–251. doi:10.1002/esp.3623.
  • Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B. 2007. Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Glob Planet Change. 59:225–235. doi:10.1016/j.gloplacha.2006.11.016.
  • Stoffel M, Mendlik T, Schneuwly-Bollschweiler M, Gobiet A. 2014. Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim Change. 122:141–155. doi:10.1007/s10584-013-0993-z.
  • Underwood SJ, Schultz MD, Berti M, Gregoretti C, Simoni A, Mote TL, Saylor AM. 2016. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy. Nat Hazards Earth Syst Sci. 16:509–528. doi:10.5194/nhess-16-509-2016.
  • van Steijn H. 1999. Frequency of hillslope debris flows in the Bachelard valley (French Alps). In: Panizza M, Soldati M, Bertacchini M, van Asch W, Malmusi S, editors. The Erasmus 96–97 programme in geomorphology: intensive course in the French Alps and student's mobility. Modena: Dipartimento di Scienze della Terra, Università degli Studi di Modena e Reggio Emilia; p. 15–24.
  • Webb GI, Sammut C, Perlich C, Horváth T, Wrobel S, Korb KB, Noble WS, Leslie C, Lagoudakis MG, Quadrianto N, et al. 2010. Leave-one-out cross-validation. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston, MA: Springer US; p. 600–601. (SpringerLink Bücher).
  • Wichmann V. 2006. Modellierung geomorphologischer Prozesse in einem alpinen Einzugsgebiet: Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem GIS [Zugl.: Eichstätt, Katholische Univ., Diss., 2005 u.d.T.: Wichmann, Volker: Entwicklung von prozessorientierten Modellen zur flächenverteilten Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit einem GIS - dargestellt am Einzugsgebiet des Lahnenwiesgrabens Ammergebirge]. München, Wien: Profil-Verl. 231 p. (Eichstätter Geographische Arbeiten; vol. 15). ISBN: 3-89019-605-5 . ger. http://edoc.ku-eichstaett.de/10754/.
  • Zimmermann M. 1990. Debris flows 1987 in Switzerland: geomorphological and meteorological aspects. IAHS. Hydrol Mountainous Reg. 2:387–393. https://hydrologie.org/redbooks/a194/iahs_194_0387.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.