Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 4
66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of maltodextrin and inulin addition on the dairy-based powders properties

, , , , &
Pages 612-621 | Received 27 Jul 2023, Accepted 07 Dec 2023, Published online: 27 Dec 2023

References

  • Schmitz, S. I.; Gianfrancesco, A.; Foerst, P.; Kulozik, U. Impact of Dehydration on Lysine Loss in a Model Dairy Formulation. Drying Technol. 2013, 31, 1477–1484. DOI: 10.1080/07373937.2013.776072.
  • Phosanam, A.; Chandrapala, J.; Zisu, B.; Adhikari, B. Storage Stability of Powdered Dairy Ingredients: A Review. Drying Technol. 2021, 39, 1529–1553. DOI: 10.1080/07373937.2021.1910955.
  • Linke, T.; Happe, J.; Kohlus, R. Laboratory-Scale Superheated Steam Spray Drying of Food and Dairy Products. Drying Technol. 2022, 40, 1703–1714. DOI: 10.1080/07373937.2020.1870127.
  • Patil, M. H.; Tanguy, G.; Floch-Fouéré, C. L.; Jeantet, R.; Murphy, E. G. Energy Usage in the Manufacture of Dairy Powders: Advances in Conventional Processing and Disruptive Technologies. Drying Technol. 2021, 39, 1595–1613. DOI: 10.1080/07373937.2021.1903489.
  • Dhungana, P.; Truong, T.; Bansal, N.; Bhandari, B. Effect of Fat Globule Size on the Physicochemical Properties of Dairy Cream Powder Produced by Spray Drying. Drying Technol. 2021, 39, 2160–2172. DOI: 10.1080/07373937.2020.1758129.
  • Sharma, A.; Atanu, H. J.; Rupesh, S. C. Functionality of Milk Powders and Milk-Based Powders for End Use Applications—A Review. Comp. Rev. Food Sci. Food Saf. 2012, 11, 518–528. DOI: 10.1111/j.1541-4337.2012.00199.x.
  • Fialho, T. L.; Martins, E.; Silva, C. R. D. J.; Stephani, R.; Tavares, G. M.; Silveira, A. C. P.; Perrone, I. T.; Schuck, P.; de Oliveira, L. F. C.; de Carvalho, A. F. Lactose-Hydrolyzed Milk Powder: Physicochemical and Technofunctional Characterization. Drying Technol. 2018, 36, 1688–1695. DOI: 10.1080/07373937.2017.1421551.
  • de Paula, I. L.; Teixeira, E. B. S.; Francisquini, J. D. A.; Stephani, R.; Perrone, Í. T.; de Carvalho, A. F.; de Oliveira, L. F. C. Buffalo Powder Dairy Products with and without Lactose Hydrolysis: Physical-Chemical and Technical-Functional Characterizations. LWT 2021, 151, 112124. DOI: 10.1016/j.lwt.2021.112124.
  • Muzaffar, K.; Kumar, P. Comparative Efficiency of Maltodextrin and Protein in the Production of Spray-Dried Tamarind Pulp Powder. Drying Technol. 2016, 34, 802–809. DOI: 10.1080/07373937.2015.1080724.
  • Jirayucharoensak, R.; Khuenpet, K.; Jittanit, W.; Sirisansaneeyakul, S. Physical and Chemical Properties of Powder Produced from Spray Drying of Inulin Component Extracted from Jerusalem Artichoke Tuber Powder. Drying Technol. 2018, 37, 1215–1227. DOI: 10.1080/07373937.2018.1492934.
  • World Cancer Research Fund, American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Colorectal Cancer: Continuous Update Project; 2017. http://wcrf.org/colorectal-cancer-2017.
  • Zacaron, T. M.; Francisquini, J. D. A.; Perrone, Í. T.; Stephani, R. The Effect of Homogenisation Pressure on the Microstructure of Milk during Evaporation and Drying: Particle-Size Distribution, Electronic Scanning Microscopy, Water Activity and Isotherm. J. Dairy Res. 2023, 90, 299–305. DOI: 10.1017/S0022029923000456.
  • Torres, J. K. F.; Stephani, R.; Tavares, G. M.; De Carvalho, A. F.; Costa, R. G. B.; de Almeida, C. E. R.; Almeida, M. R.; de Oliveira, L. F. C.; Schuck, P.; Perrone, Í. T. Technological Aspects of Lactose-Hydrolyzed Milk Powder. Food Res. Int. 2017, 101, 45–53. DOI: 10.1016/j.foodres.2017.08.043.
  • Walstra, P.; Wouters, J. T.; Geurts, T. J. Dairy Science and Technology; CRC Press: Boca Raton, FL, 2005.
  • Francisquini, J. D. A.; Nunes, L.; Martins, E.; Stephani, R.; Perrone, Í. T.; Carvalho, A. F. D. How the Heat Treatment Affects the Constituents of Infant Formulas: A Review. Braz. J. Food Technol. 2020, 23, e2019272. DOI: 10.1590/1981-6723.27219.
  • Fabra, M. J.; Márquez, E.; Castro, D.; Chiralt, A. Effect of Maltodextrins in the Water-Content–Water Activity–Glass Transition Relationships of Noni (Morinda citrifolia L.) Pulp Powder. J. Food Eng. 2011, 103, 47–51. DOI: 10.1016/j.jfoodeng.2010.09.018.
  • Chen, X. D.; Patel, K. C. Manufacturing Better Quality Food Powders from Spray Drying and Subsequent Treatments. Drying Technol. 2008, 26, 1313–1318. DOI: 10.1080/07373930802330904.
  • Verdurmen, R. E. M.; Houwelingen, G. V.; Gunsing, M.; Verschueren, M.; Straatsma, J. Agglomeration in Spray Drying Installations (the EDECAD Project): Stickiness Measurements and Simulation Results. Drying Technol. 2006, 24, 721–726. DOI: 10.1080/07373930600684973.
  • Zimeri, J. E.; Kokini, J. L. The Effect of Moisture Content on the Crystallinity and Glass Transition Temperature of Inulin. Carbohyd. Polym. 2002, 48, 299–304. DOI: 10.1016/S0144-8617(01)00260-0.
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X. D.; Perrone, I. T.; de Carvalho, A. F.; Fenelon, M.; Kelly, P. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Drying Technol. 2016, 34, 1773–1790. DOI: 10.1080/07373937.2016.1233114.
  • Silva, C. R. D.; Martins, E.; Silveira, A. C. P.; Simeão, M.; Mendes, A. L.; Perrone, Í. T.; Schuck, P.; de Carvalho, A. F. Thermodynamic Characterization of Single-Stage Spray Dryers: Mass and Energy Balances for Milk Drying. Drying Technol. 2017, 35, 1791–1798. DOI: 10.1080/07373937.2016.1275675.
  • Bisar, G. H.; El-Saadany, K.; Khattab, A.; El-Kholy, W. M. Implementing Maltodextrin, Polydextrose and Inulin in Making a Synbiotic Fermented Dairy Product. Br. Microbiol. Res. J. 2015, 8, 585–603. DOI: 10.9734/BMRJ/2015/16950.
  • Schmitz-Schug, I.; Foerst, P.; Kulozik, U. Impact of the Spray Drying Conditions and Residence Time Distribution on Lysine Loss in Spray Dried Infant Formula. Dairy Sci. Technol. 2013, 93, 443–462. DOI: 10.1007/s13594-013-0115-8.
  • Fäldt, P.; Bergenståhl, B. The Surface Composition of Spray-Dried Protein—Lactose Powders. Colloids Surf. A Physicochem. Eng. Asp. 1994, 90, 183–190. DOI: 10.1016/0927-7757(94)02914-8.
  • Almeida, M. R.; Oliveira, K. S.; Stephani, R.; Oliveira, L. F. C. Fourier‐Transform Raman Analysis of Milk Powder: A Potential Method for Rapid Quality Screening. J. Raman Spectrosc. 2011, 42, 1548–1552. DOI: 10.1002/jrs.2893.
  • Almeida, M. R.; Oliveira, K. S.; Stephani, R.; Oliveira, L. F. C. Application of FT-Raman Spectroscopy and Chemometric Analysis for Determination of Adulteration in Milk Powder. Anal. Lett. 2012, 45, 2589–2602. DOI: 10.1080/00032719.2012.698672.
  • Rodrigues Júnior, P. H.; de Sá Oliveira, K.; de Almeida, C. E. R.; De Oliveira, L. F. C.; Stephani, R.; Pinto, M. d S.; de Carvalho, A. F.; Perrone, Í. T. FT-Raman and Chemometric Tools for Rapid Determination of Quality Parameters in Milk Powder: Classification of Samples for the Presence of Lactose and Fraud Detection by Addition of Maltodextrin. Food Chem. 2016, 196, 584–588. DOI: 10.1016/j.foodchem.2015.09.055.
  • Zhou, Q.; Sun, S. Q.; Yu, L.; Xu, C. H.; Noda, I.; Zhang, X. R. Sequential Changes of Main Components in Different Kinds of Milk Powders Using Two-Dimensional Infrared Correlation Analysis. J. Mol. Struct. 2006, 799, 77–84. DOI: 10.1016/j.molstruc.2006.03.025.
  • Li-Chan, E. C. Y. The Applications of Raman Spectroscopy in Food Science. Trends Food Sci. Technol. 1996, 7, 361–370. DOI: 10.1016/S0924-2244(96)10037-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.