Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 4
212
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Continuous preparation of sustained release vildagliptin nanoparticles using tubular microreactor approach

, , , , , , , , , & ORCID Icon show all
Pages 661-673 | Received 08 Aug 2023, Accepted 14 Dec 2023, Published online: 04 Jan 2024

References

  • Waghulde, M.; Rajput, R.; Mujumdar, A.; Naik, J. Production and Evaluation of Vildagliptin-Loaded Poly(Dl-Lactide) and Poly(Dl-Lactide-Glycolide) Micro-/Nanoparticles: Response Surface Methodology Approach. Dry. Technol. 2019, 37, 1265–1276. DOI: 10.1080/07373937.2018.1495231.
  • Naik, J. B.; Waghulde, M. R. Development of Vildagliptin Loaded Eudragit® Microspheres by Screening Design: In Vitro Evaluation. J. Pharm. Investig. 2018, 48, 627–637. DOI: 10.1007/s40005-017-0355-3.
  • Fayyaz, S.; Ahmed, D.; Khalid, S.; Khan, S. N.; Shah, M. R.; Choudhary, M. I. Synthesis of Vildagliptin Conjugated Metal Nanoparticles for Type II Diabetes Control: Targeting the DPP-IV Enzyme. New J. Chem. 2020, 44, 20853–20860. DOI: 10.1039/D0NJ04202A.
  • Waghulde, M.; Naik, J. Comparative Study of Encapsulated Vildagliptin Microparticles Produced by Spray Drying and Solvent Evaporation Technique. Dry. Technol. 2017, 35, 1644–1654. DOI: 10.1080/07373937.2016.1273230.
  • Lee, C.-H.; Chen, D.-Y.; Hsieh, M.-J.; Hung, K.-C.; Huang, S.-C.; Cho, C.-J.; Liu, S.-J. Nanofibrous Insulin/Vildagliptin Core-Shell PLGA Scaffold Promotes Diabetic Wound Healing. Front Bioeng. Biotechnol. 2023, 11, 1075720. DOI: 10.3389/fbioe.2023.1075720.
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro- and Nanospheres/Particles Preparation: A Review. Dry. Technol. 2016, 34, 1758–1772. DOI: 10.1080/07373937.2016.1232271.
  • Deshmukh, R.; Mujumdar, A.; Naik, J. Production of Aceclofenac-Loaded Sustained Release Micro/Nanoparticles Using Pressure Homogenization and Spray Drying. Dry. Technol. 2018, 36, 459–467. DOI: 10.1080/07373937.2017.1341418.
  • Mokale, V.; Rajput, R.; Patil, J.; Yadava, S.; Naik, J. Formulation of Metformin Hydrochloride Nanoparticles by Using Spray Drying Technique and in Vitro Evaluation of Sustained Release with 32-Level Factorial Design Approach. Dry. Technol. 2016, 34, 1455–1461. DOI: 10.1080/07373937.2015.1125916.
  • Pradhan, S. P.; Tejaswani, P.; Sa, N.; Behera, A.; Sahoo, R. K.; Sahu, P. K. Mechanistic Study of Gold Nanoparticles of Vildagliptin and Vitamin E in Diabetic Cognitive Impairment. J. Drug Deliv. Sci. Technol. 2023, 84, 104508. DOI: 10.1016/j.jddst.2023.104508.
  • Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. DOI: 10.1038/s41573-020-0090-8.
  • Gholap, A. D.; Sayyad, S. F.; Hatvate, N. T.; Dhumal, V. V.; Pardeshi, S. R.; Chavda, V. P.; Vora, L. K. Drug Delivery Strategies for Avobenzone: A Case Study of Photostabilization. Pharmaceutics 2023, 15, 1008. DOI: 10.3390/pharmaceutics15031008.
  • Roberts, R.; Smyth, J. W.; Will, J.; Roberts, P.; Grek, C. L.; Ghatnekar, G. S.; Sheng, Z.; Gourdie, R. G.; Lamouille, S.; Foster, E. J. Development of PLGA Nanoparticles for Sustained Release of a Connexin43 Mimetic Peptide to Target Glioblastoma Cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110191. DOI: 10.1016/j.msec.2019.110191.
  • Oh, S. J.; Jung, J. H. Sustainable Drug Release Using Nanoparticle Encapsulated Microneedles. Chemistry An Asian J. 2022, 17, e202200333. DOI: 10.1002/asia.202200333.
  • Patil, J.; Rajput, R.; Patil, P.; Mujumdar, A.; Naik, J. Generation of Sustained Release Chitosan Nanoparticles for Delivery of Ketorolac Tromethamine: A Tubular Microreactor Approach. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 516–524. DOI: 10.1080/00914037.2019.1581201.
  • Pardeshi, S.; More, M.; Patil, P.; Pardeshi, C.; Deshmukh, P.; Mujumdar, A.; Naik, J. A Meticulous Overview on Drying-Based (Spray-, Freeze-, and Spray-Freeze) Particle Engineering Approaches for Pharmaceutical Technologies. Dry. Technol. 2021, 39, 1447–1491. DOI: 10.1080/07373937.2021.1893330.
  • Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Scale-up Polymeric-Based Nanoparticles Drug Delivery Systems: Development and Challenges. OpenNano 2022, 7, 100048. DOI: 10.1016/j.onano.2022.100048.
  • Patil, A.; Patil, P.; Pardeshi, S.; Shrimal, P.; Rebello, N.; Mohite, P. B.; Chatterjee, A.; Mujumdar, A.; Naik, J. Combined Microfluidics and Drying Processes for the Continuous Production of Micro-/Nanoparticles for Drug Delivery: A Review. Dry. Technol. 2023, 1–36. DOI: 10.1080/07373937.2023.2167827.
  • Kim, S.; Wang, H.; Yan, L.; Zhang, X.; Cheng, Y. Continuous Preparation of Itraconazole Nanoparticles Using Droplet-Based Microreactor. Chem. Eng. J. 2020, 393, 124721. DOI: 10.1016/j.cej.2020.124721.
  • Fanelli, F.; Parisi, G.; Degennaro, L.; Luisi, R. Contribution of Microreactor Technology and Flow Chemistry to the Development of Green and Sustainable Synthesis. Beilstein J. Org. Chem. 2017, 13, 520–542. DOI: 10.3762/bjoc.13.51.
  • Pardeshi, S. R.; Mistari, H. A.; Jain, R. S.; Pardeshi, P. R.; Rajput, R. L.; Mahajan, D. S.; Shirsath, N. R. Development and Optimization of Sustained Release Moxifloxacin Hydrochloride Loaded Nanoemulsion for Ophthalmic Drug Delivery: A 32 Factorial Design Approach. Micro Nanosyst. 2021, 13, 292–302. DOI: 10.2174/1876402912999200826111031.
  • Shrimal, P.; Sanklecha, H.; Patil, P.; Mujumdar, A.; Naik, J. Biodiesel Production in Tubular Microreactor: Optimization by Response Surface Methodology. Arab. J. Sci. Eng. 2018, 43, 6133–6141. DOI: 10.1007/s13369-018-3245-8.
  • Shrimal, P.; Jadeja, G.; Naik, J.; Patel, S. Continuous Microchannel Precipitation to Enhance the Solubility of Telmisartan with Poloxamer 407 Using Box-Behnken Design Approach. J. Drug Deliv. Sci. Technol. 2019, 53, 101225. DOI: 10.1016/j.jddst.2019.101225.
  • Shrimal, P.; Jadeja, G.; Patel, S. Microfluidics Nanoprecipitation of Telmisartan Nanoparticles: Effect of Process and Formulation Parameters. Chem. Pap. 2021, 75, 205–214. DOI: 10.1007/s11696-020-01289-w.
  • Weissman, S. A.; Anderson, N. G. Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org. Process Res. Dev. 2015, 19, 1605–1633. DOI: 10.1021/op500169m.
  • Jankovic, A.; Chaudhary, G.; Goia, F. Designing the Design of Experiments (DOE) – an Investigation on the Influence of Different Factorial Designs on the Characterization of Complex Systems. Energy Build. 2021, 250, 111298. DOI: 10.1016/j.enbuild.2021.111298.
  • Pardeshi, S. R.; More, M. P.; Pardeshi, C. V.; Chaudhari, P. J.; Gholap, A. D.; Patil, A.; Patil, P. B.; Naik, J. B. Novel Crosslinked Nanoparticles of Chitosan Oligosaccharide and Dextran Sulfate for Ocular Administration of Dorzolamide against Glaucoma. J. Drug Deliv. Sci. Technol. 2023, 86, 104719. DOI: 10.1016/j.jddst.2023.104719.
  • Mandpe, S.; Kole, E.; Parate, V.; Chatterjee, A.; Mujumdar, A.; Naik, J. Design, Development, and Evaluation of Spray Dried Flurbiprofen Loaded Sustained Release Polymeric Nanoparticles Using QBD Approach to Manage Inflammation. Dry. Technol. 2023, 41, 2418–2430. DOI: 10.1080/07373937.2023.2251572.
  • Pardeshi, S. R.; More, M. P.; Patil, P. B.; Mujumdar, A.; Naik, J. B. Statistical Optimization of Voriconazole Nanoparticles Loaded Carboxymethyl Chitosan-Poloxamer Based in Situ Gel for Ocular Delivery: In Vitro, Ex Vivo, and Toxicity Assessment. Drug Deliv. Transl. Res. 2022, 12, 3063–3082. DOI: 10.1007/s13346-022-01171-0.
  • Waghulde, M.; Naik, J. Development and Validation of Analytical Method for Vildagliptinencapsulated Poly-ε-Caprolactone Microparticles. Mater. Today Proc. 2018, 5, 958–964. DOI: 10.1016/j.matpr.2017.11.171.
  • Pardeshi, S.; Patil, P.; Rajput, R.; Mujumdar, A.; Naik, J. Preparation and Characterization of Sustained Release Pirfenidone Loaded Microparticles for Pulmonary Drug Delivery: Spray Drying Approach. Dry. Technol. 2021, 39, 337–347. DOI: 10.1080/07373937.2020.1833213.
  • Deshmukh, R. K.; Naik, J. B. Optimization of Sustained Release Aceclofenac Microspheres Using Response Surface Methodology. Mater. Sci. Eng.: C 2015, 48, 197–204. DOI: 10.1016/j.msec.2014.12.008.
  • Al Zahabi, K. H.; Ben Tkhayat, H.; Abu-Basha, E.; Sallam, A. S.; Younes, H. M. Formulation of Lipid-Based Tableted Spray-Congealed Microparticles for Sustained Release of Vildagliptin: In Vitro and in Vivo Studies. Pharmaceutics 2021, 13, 2158. DOI: 10.3390/pharmaceutics13122158.
  • Khairnar, G.; Naik, J.; Mokale, V. A Statistical Study on the Development of Micro Particulate Sustained Drug Delivery System for Losartan Potassium by 3 2 Factorial Design Approach. Bull. Fac. Pharmacy 2017, 55, 19–29. DOI: 10.1016/j.bfopcu.2016.10.001.
  • Hazra, C.; Tonde, S.; Dhanvijay, B.; Kundu, D.; Satdive, A.; Tayde, S.; Toksha, B.; Naik, J.; Chatterjee, A. Biosurfactant Assisted in Situ Green and Clean Preparation Route for Layered Double Hydroxides and Their Green Metrics-Based Sustainability Assessment. Chem. Eng. J. 2023, 451, 138996. DOI: 10.1016/j.cej.2022.138996.
  • Pardeshi, C. V.; Rajput, P. V.; Belgamwar, V. S.; Tekade, A. R.; Surana, S. J. Novel Surface Modified Solid Lipid Nanoparticles as Intranasal Carriers for Ropinirole Hydrochloride: Application of Factorial Design Approach. Drug Deliv. 2013, 20, 47–56. DOI: 10.3109/10717544.2012.752421.
  • Deshmukh, R. K.; Naik, J. B. Diclofenac Sodium-Loaded Eudragit® Microspheres: Optimization Using Statistical Experimental Design. J. Pharm. Innov. 2013, 8, 276–287. DOI: 10.1007/s12247-013-9167-9.
  • Deshmukh, R. K.; Naik, J. B. Aceclofenac Microspheres: Quality by Design Approach. Mater. Sci. Eng. C 2014, 36, 320–328. DOI: 10.1016/j.msec.2013.12.024.
  • Verma, U.; Mujumdar, A.; Naik, J. Preparation of Efavirenz Resinate by Spray Drying Using Response Surface Methodology and Its Physicochemical Characterization for Taste Masking. Dry. Technol. 2020, 38, 793–805. DOI: 10.1080/07373937.2019.1590845.
  • Sharma, N.; Madan, P.; Lin, S. Effect of Process and Formulation Variables on the Preparation of Parenteral Paclitaxel-Loaded Biodegradable Polymeric Nanoparticles: A Co-Surfactant Study. Asian J. Pharm. Sci. 2016, 11, 404–416. DOI: 10.1016/j.ajps.2015.09.004.
  • Dilawar, N.; Ur-Rehman, T.; Shah, K. U.; Fatima, H.; Alhodaib, A. Development and Evaluation of PLGA Nanoparticle-Loaded Organogel for the Transdermal Delivery of Risperidone. Gels 2022, 8, 709. DOI: 10.3390/gels8110709.
  • Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Kiafar, F.; Jelvehgari, M. Development of a Nanoprecipitation Method for the Entrapment of a Very Water Soluble Drug into Eudragit RL Nanoparticles. Res. Pharm. Sci. 2017, 12, 1. DOI: 10.4103/1735-5362.199041.
  • Wagh, P. S.; Naik, J. B. Development of Mefenamic Acid–Loaded Polymeric Microparticles Using Solvent Evaporation and Spray-Drying Technique. Dry. Technol. 2016, 34, 608–617. DOI: 10.1080/07373937.2015.1064947.
  • Chicco, D.; Warrens, M. J.; Jurman, G. The Coefficient of Determination R-Squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. DOI: 10.7717/peerj-cs.623.
  • Godbole, M. D.; Sabale, P. M.; Mathur, V. B. Development of Lamivudine Liposomes by Three-Level Factorial Design Approach for Optimum Entrapment and Enhancing Tissue Targeting. J Microencapsul. 2020, 37, 431–444. DOI: 10.1080/02652048.2020.1778806.
  • Khairnar, G.; Mokale, V.; Khairnar, R.; Mujumdar, A.; Naik, J. Production of Antihyerglycemic and Antihypertensive Drug Loaded Sustained Release Nanoparticles Using Spray Drying Technique: Optimization by Placket Burman Design. Dry. Technol. 2022, 40, 626–637. DOI: 10.1080/07373937.2020.1825292.
  • Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. DOI: 10.3390/pharmaceutics10020057.
  • Kumar, D.; Gautam, A.; Rohatgi, S.; Kundu, P. P. Synthesis of Vildagliptin Loaded Acrylamide-g-Psyllium/Alginate-Based Core-Shell Nanoparticles for Diabetes Treatment. Int. J. Biol. Macromol. 2022, 218, 82–93. DOI: 10.1016/j.ijbiomac.2022.07.066.
  • Baig, M. M. F. A.; Khan, S.; Naeem, M. A.; Khan, G. J.; Ansari, M. T. Vildagliptin Loaded Triangular DNA Nanospheres Coated with Eudragit for Oral Delivery and Better Glycemic Control in Type 2 Diabetes Mellitus. Biomed. Pharmacother. 2018, 97, 1250–1258. DOI: 10.1016/j.biopha.2017.11.059.
  • Dewan, I.; Islam, S.; Rana, M. S. Characterization and Compatibility Studies of Different Rate Retardant Polymer Loaded Microspheres by Solvent Evaporation Technique: In Vitro-In Vivo Study of Vildagliptin as a Model Drug. J. Drug Deliv. 2015, 2015, 496807–496812. DOI: 10.1155/2015/496807.
  • Kulkarni, A. D.; Vanjari, Y. H.; Sancheti, K. H.; Patel, H. M.; Belgamwar, V. S.; Surana, S. J.; Pardeshi, C. V. New Nasal Nanocomplex Self-Assembled from Charged Biomacromolecules: N,N,N-Trimethyl Chitosan and Dextran Sulfate. Int. J. Biol. Macromol. 2016, 88, 476–490. DOI: 10.1016/j.ijbiomac.2016.03.045.
  • Pardeshi, C. V.; Agnihotri, V. V.; Patil, K. Y.; Pardeshi, S. R.; Surana, S. J. Mannose-Anchored N,N,N-Trimethyl Chitosan Nanoparticles for Pulmonary Administration of Etofylline. Int. J. Biol. Macromol. 2020, 165, 445–459. DOI: 10.1016/j.ijbiomac.2020.09.163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.