Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 4
1,233
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Impact of drying on techno-functional and nutritional properties of food proteins and carbohydrates - A comprehensive review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 592-611 | Received 06 Sep 2023, Accepted 05 Jan 2024, Published online: 07 Feb 2024

References

  • Onwude, D. I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A. O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innovative Food Sci. Emerg. Technol. 2017, 43, 223–238. DOI: 10.1016/j.ifset.2017.08.010.
  • Alaei, B.; Dibagar, N.; Chayjan, R. A.; Kaveh, M.; Taghinezhad, E. The Effect of Short and Medium Infrared Radiation on Some Drying and Quality Characteristics of Quince Slices under Vacuum Condition. Qual. Assur. Saf. Crops Food. 2018, 10, 371–381. DOI: 10.3920/QAS2017.1252.
  • Duan, X.; Yang, X.; Ren, G.; Pang, Y.; Liu, L.; Liu, Y. Technical Aspects in Freeze-Drying of Foods. Drying Technol. 2016, 34, 1271–1285. DOI: 10.1080/07373937.2015.1099545.
  • Dehghannya, J.; Hosseinlar, S. H.; Heshmati, M. K. Multi-Stage Continuous and Intermittent Microwave Drying of Quince Fruit Coupled with Osmotic Dehydration and Low Temperature Hot Air Drying. Innovative Food Sci. Emerg. Technol. 2018, 45, 132–151. DOI: 10.1016/j.ifset.2017.10.007.
  • Moradi, M.; Azizi, S.; Niakousari, M.; Kamgar, S.; Khaneghah, A. M. Drying of Green Bell Pepper Slices Using an IR-Assisted Spouted Bed Dryer: An Assessment of Drying Kinetics and Energy Consumption. Innovative Food Sci. Emerg. Technol. 2020, 60, 102280. DOI: 10.1016/j.ifset.2019.102280.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Zhou, X.; Wang, S. Recent Developments in Radio Frequency Drying of Food and Agricultural Products: A Review. Drying Technol. 2019, 37, 271–286. DOI: 10.1080/07373937.2018.1452255.
  • Liu, Y.; Fan, C.; Tian, M.; Yang, Z.; Liu, F.; Pan, S. Effect of Drying Methods on Physicochemical Properties and in Vitro Hypoglycemic Effects of Orange Peel Dietary Fiber. J. Food Process. Preserv. 2017, 41, e13292. DOI: 10.1111/jfpp.13292.
  • Nasim, K. P. Fundamental Drying Techniques Applied in Food Science and Technology. Int. J. Food Eng. Res. 2020, 6, 35–63.
  • Pu, Y. Y.; Sun, D. W. Combined Hot-Air and Microwave-Vacuum Drying for Improving Drying Uniformity of Mango Slices Based on Hyperspectral Imaging Visualisation of Moisture Content Distribution. Biosyst. Eng. 2017, 156, 108–119. DOI: 10.1016/j.biosystemseng.2017.01.006.
  • Shende, D.; Datta, A. K. Refractance Window Drying of Fruits and Vegetables: A Review. J. Sci. Food Agric. 2019, 99, 1449–1456. DOI: 10.1002/jsfa.9356.
  • Galvão, A. M.; Rodrigues, S.; Fernandes, F. A. Kinetics of Ultrasound Pretreated Apple Cubes Dried in Fluidized Bed Dryer. Drying Technol. 2020, 38, 1367–1377. DOI: 10.1080/07373937.2019.1641511.
  • Hii, C. L.; Ong, S. P.; Yap, J. Y.; Putranto, A.; Mangindaan, D. Hybrid Drying of Food and Bioproducts: A Review. Drying Technol. 2021, 39, 1554–1576. DOI: 10.1080/07373937.2021.1914078.
  • Barzegar, M.; Zare, D.; Stroshine, R. L. An Integrated Energy and Quality Approach to Optimization of Green Peas Drying in a Hot Air Infrared-Assisted Vibratory Bed Dryer. J. Food Eng. 2015, 166, 302–315. DOI: 10.1016/j.jfoodeng.2015.06.026.
  • Menon, A.; Stojceska, V.; Tassou, S. A. A Systematic Review on the Recent Advances of the Energy Efficiency Improvements in Non-Conventional Food Drying Technologies. Trends Food Sci. Technol. 2020, 100, 67–76. DOI: 10.1016/j.tifs.2020.03.014.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Drying Technol. 2020, 38, 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Hasan, M. U.; Malik, A. U.; Ali, S.; Imtiaz, A.; Munir, A.; Amjad, W.; Anwar, R. Modern Drying Techniques in Fruits and Vegetables to Overcome Postharvest Losses: A Review. J. Food Process. Preserv 2019, 43, e14280.
  • Liu, Y.; Zhang, Z.; Hu, L. High Efficient Freeze-Drying Technology in Food Industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 3370–3388. DOI: 10.1080/10408398.2020.1865261.
  • Inyang, U.; Oboh, I.; Etuk, B. Drying and the Different Techniques. Int. J. Food Nutr. Saf. 2017, 8, 45–72.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber Officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197 Pt B, 1292–1300. DOI: 10.1016/j.foodchem.2015.11.033.
  • Moses, J.; Norton, T.; Alagusundaram, K.; Tiwari, B. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6, 43–55. DOI: 10.1007/s12393-014-9078-7.
  • Hnin, K. K.; Zhang, M.; Mujumdar, A. S.; Zhu, Y. Emerging Food Drying Technologies with Energy-Saving Characteristics: A Review. Drying Technol. 2019, 37, 1465–1480. DOI: 10.1080/07373937.2018.1510417.
  • Gültekin Subaşı, B.; Vahapoğlu, B.; Capanoglu, E.; Mohammadifar, M. A. A Review on Protein Extracts from Sunflower Cake: Techno-Functional Properties and Promising Modification Methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 6682–6697. DOI: 10.1080/10408398.2021.1904821.
  • Samborska, K.; Poozesh, S.; Barańska, A.; Sobulska, M.; Jedlińska, A.; Arpagaus, C.; Malekjani, N.; Jafari, S. M. Innovations in Spray Drying Process for Food and Pharma Industries. J. Food Eng. 2022, 321, 110960. DOI: 10.1016/j.jfoodeng.2022.110960.
  • Sagar, V.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47, 15–26. DOI: 10.1007/s13197-010-0010-8.
  • Hamzeh, A.; Benjakul, S.; Sae-Leaw, T.; Sinthusamran, S. Effect of Drying Methods on Gelatin from Splendid Squid (Loligo Formosana) Skins. Food Biosci. 2018, 26, 96–103. DOI: 10.1016/j.fbio.2018.10.001.
  • Feyzi, S.; Milani, E.; Golimovahhed, Q. A. Grass Pea (Lathyrus Sativus L.) Protein Isolate: The Effect of Extraction Optimization and Drying Methods on the Structure and Functional Properties. Food Hydrocoll. 2018, 74, 187–196. DOI: 10.1016/j.foodhyd.2017.07.031.
  • Mutukuri, T. T.; Wilson, N. E.; Taylor, L. S.; Topp, E. M.; Zhou, Q. T. Effects of Drying Method and Excipient on the Structure and Physical Stability of Protein Solids: Freeze Drying vs. spray Freeze Drying. Int. J. Pharm. 2021, 594, 120169. DOI: 10.1016/j.ijpharm.2020.120169.
  • Zhou, X.; Chung, H. J.; Kim, J. Y.; Lim, S. T. In Vitro Analyses of Resistant Starch in Retrograded Waxy and Normal Corn Starches. Int. J. Biol. Macromol. 2013, 55, 113–117. DOI: 10.1016/j.ijbiomac.2012.12.031.
  • Joshi, M.; Adhikari, B.; Aldred, P.; Panozzo, J.; Kasapis, S. Physicochemical and Functional Properties of Lentil Protein Isolates Prepared by Different Drying Methods. Food Chem. 2011, 129, 1513–1522. DOI: 10.1016/j.foodchem.2011.05.131.
  • Kanwate, B. W.; Ballari, R. V.; Kudre, T. G. Influence of Spray-Drying, Freeze-Drying and Vacuum-Drying on Physicochemical and Functional Properties of Gelatin from Labeo Rohita Swim Bladder. Int. J. Biol. Macromol. 2019, 121, 135–141. DOI: 10.1016/j.ijbiomac.2018.10.015.
  • Claussen, I. C.; Str⊘Mmen, I.; Egelandsdal, B.; Strætkvern, K. O. Effects of Drying Methods on Functionality of a Native Potato Protein Concentrate. Drying Technol. 2007, 25, 1091–1098. DOI: 10.1080/07373930701396444.
  • Salem, A.; Fakhfakh, N.; Jridi, M.; Abdelhedi, O.; Nasri, M.; Debeaufort, F.; Zouari, N. Microstructure and Characteristic Properties of Dogfish Skin Gelatin Gels Prepared by Freeze/Spray-Drying Methods. Int. J. Biol. Macromol. 2020, 162, 1–10. DOI: 10.1016/j.ijbiomac.2020.06.033.
  • Mad-Ali, S.; Benjakul, S.; Prodpran, T.; Maqsood, S. Interfacial Properties of Gelatin from Goat Skin as Influenced by Drying Methods. LWT Food Sci. Technol. 2016, 73, 102–107. DOI: 10.1016/j.lwt.2016.05.048.
  • Zhao, Q.; Xiong, H.; Selomulya, C.; Chen, X. D.; Huang, S.; Ruan, X.; Zhou, Q.; Sun, W. Effects of Spray Drying and Freeze Drying on the Properties of Protein Isolate from Rice Dreg Protein. Food Bioprocess Technol. 2013, 6, 1759–1769. DOI: 10.1007/s11947-012-0844-3.
  • Wan Omar, W. H.; Sarbon, N. M. Effect of Drying Method on Functional Properties and Antioxidant Activities of Chicken Skin Gelatin Hydrolysate. J. Food Sci. Technol. 2016, 53, 3928–3938. DOI: 10.1007/s13197-016-2379-5.
  • Schmidt, J. M.; Damgaard, H.; Greve-Poulsen, M.; Sunds, A. V.; Larsen, L. B.; Hammershøj, M. Gel Properties of Potato Protein and the Isolated Fractions of Patatins and Protease Inhibitors – Impact of Drying Method, Protein Concentration, pH and Ionic Strength. Food Hydrocoll. 2019, 96, 246–258. DOI: 10.1016/j.foodhyd.2019.05.022.
  • Haque, M. A.; Timilsena, Y. P.; Adhikari, B. Spray Drying. In Drying Technologies for Foods, Chapter 4, Nema, P. K., Pal Kaur, B., Mujumdar, A. S., Eds.; New India Publishing Agency: New Delhi, 2015; pp 79–106.
  • Zhou, B.; Zhang, M.; Fang, Z.; Liu, Y. A Combination of Freeze Drying and Microwave Vacuum Drying of Duck Egg White Protein Powders. Drying Technol. 2014, 32, 1840–1847. DOI: 10.1080/07373937.2014.952380.
  • Huang, C.; Feng, W.; Xiong, J.; Wang, T.; Wang, W.; Wang, C.; Yang, F. Impact of Drying Method on the Nutritional Value of the Edible Insect Protein from Black Soldier Fly (Hermetia Illucens L.) Larvae: Amino Acid Composition, Nutritional Value Evaluation, in Vitro Digestibility, and Thermal Properties. Eur. Food Res. Technol. 2019, 245, 11–21. DOI: 10.1007/s00217-018-3136-y.
  • Uribe, E.; Vega-Gálvez, A.; García, V.; Pastén, A.; López, J.; Goñi, G. Effect of Different Drying Methods on Phytochemical Content and Amino Acid and Fatty Acid Profiles of the Green Seaweed, Ulva Spp. J. Appl. Phycol. 2019, 31, 1967–1979. DOI: 10.1007/s10811-018-1686-9.
  • Sasikumar, R.; Vivek, K.; Jaiswal, A. K. Effect of Spray Drying Conditions on the Physical Characteristics, Amino Acid Profile, and Bioactivity of Blood Fruit (Haematocarpus Validus Bakh.F. Ex Forman) Seed Protein Isolate. J. Food Process. Preserv. 2021, 45, e15568. DOI: 10.1111/jfpp.15568.
  • Shen, Y.; Tang, X.; Li, Y. Drying Methods Affect Physicochemical and Functional Properties of Quinoa Protein Isolate. Food Chem. 2021, 339, 127823. DOI: 10.1016/j.foodchem.2020.127823.
  • Dong, W.; Hu, R.; Chu, Z.; Zhao, J.; Tan, L. Effect of Different Drying Techniques on Bioactive Components, Fatty Acid Composition, and Volatile Profile of Robusta Coffee Beans. Food Chem. 2017, 234, 121–130. DOI: 10.1016/j.foodchem.2017.04.156.
  • Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of Different Drying Methods on the Myosin Structure, Amino Acid Composition, Protein Digestibility and Volatile Profile of Squid Fillets. Food Chem. 2015, 171, 168–176. DOI: 10.1016/j.foodchem.2014.09.002.
  • Opazo-Navarrete, M.; Tagle Freire, D.; Boom, R. M.; Janssen, A. E. M. The Influence of Starch and Fibre on in Vitro Protein Digestibility of Dry Fractionated Quinoa Seed (Riobamba Variety). Food Biophys. 2019, 14, 49–59. DOI: 10.1007/s11483-018-9556-1.
  • Córdova‐Ramos, J. S.; Glorio‐Paulet, P.; Camarena, F.; Brandolini, A.; Hidalgo, A. Andean Lupin (Lupinus Mutabilis Sweet): Processing Effects on Chemical Composition, Heat Damage, and in Vitro Protein Digestibility. Cereal Chem. 2020, 97, 827–835. DOI: 10.1002/cche.10303.
  • Söbeli, C.; Kayaardı, S. Optimization of Primary Freeze Drying Conditions for Powdered Chicken Meat Hydrolysate from Mechanically Deboned Chicken Residues. Drying Technol. 2020, 38, 1356–1366. DOI: 10.1080/07373937.2019.1640723.
  • Gonzalez, M.; Alvarez‐Ramirez, J.; Vernon‐Carter, E. J.; Reyes, I.; Alvarez‐Poblano, L. Effect of the Drying Temperature on Color, Antioxidant Activity and in Vitro Digestibility of Green Pea (Pisum sativum L.) Flour. Starch‐Stärke. 2020, 72, 1900228.
  • Dong, X.; Wang, J.; Raghavan, V. Impact of Microwave Processing on the Secondary Structure, in-Vitro Protein Digestibility and Allergenicity of Shrimp (Litopenaeus vannamei) Proteins. Food Chem. 2021, 337, 127811. DOI: 10.1016/j.foodchem.2020.127811.
  • Li, M. J.; Cao, R. G.; Tong, L. T.; Fan, B.; Sun, R. Q.; Liu, L. Y.; Wang, F. Z.; Wang, L. L. Effect of Freezing Treatment of Soybean on Soymilk Nutritional Components, Protein Digestibility, and Functional Components. Food Sci. Nutr. 2021, 9, 5997–6005. DOI: 10.1002/fsn3.2524.
  • Oyinloye, T. M.; Yoon, W. B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes. 2020, 8, 354. DOI: 10.3390/pr8030354.
  • Roman, L.; Martinez, M. M. Structural Basis of Resistant Starch (RS) in Bread: Natural and Commercial Alternatives. Foods. 2019, 8, 267. DOI: 10.3390/foods8070267.
  • Grigor, J. M.; Brennan, C. S.; Hutchings, S. C.; Rowlands, D. S. The Sensory Acceptance of Fibre‐Enriched Cereal Foods: A Meta‐Analysis. Int. J. Food Sci. Tech. 2016, 51, 3–13. DOI: 10.1111/ijfs.13005.
  • Harder, H.; Khol-Parisini, A.; Zebeli, Q. Treatments with Organic Acids and Pullulanase Differently Affect Resistant Starch and Fiber Composition in Flour of Various Barley Genotypes (Hordeum Vulgare L.). Starch Stärke. 2015, 67, 512–520. DOI: 10.1002/star.201400254.
  • Zeng, F.; Zhu, S.; Chen, F.; Gao, Q.; Yu, S. Effect of Different Drying Methods on the Structure and Digestibility of Short Chain Amylose Crystals. Food Hydrocoll. 2016, 52, 721–731. DOI: 10.1016/j.foodhyd.2015.08.012.
  • Kiatponglarp, W.; Tongta, S.; Rolland-Sabaté, A.; Buléon, A. Crystallization and Chain Reorganization of Debranched Rice Starches in Relation to Resistant Starch Formation. Carbohydr. Polym. 2015, 122, 108–114. DOI: 10.1016/j.carbpol.2014.12.070.
  • Agama-Acevedo, E.; Pacheco-Vargas, G.; Bello-Pérez, L.; Alvarez-Ramirez, J. Effect of Drying Method and Hydrothermal Treatment of Pregelatinized Hylon VII Starch on Resistant Starch Content. Food Hydrocoll. 2018, 77, 817–824. DOI: 10.1016/j.foodhyd.2017.11.025.
  • Rewthong, O.; Soponronnarit, S.; Taechapairoj, C.; Tungtrakul, P.; Prachayawarakorn, S. Effects of Cooking, Drying and Pretreatment Methods on Texture and Starch Digestibility of Instant Rice. J. Food Eng. 2011, 103, 258–264. DOI: 10.1016/j.jfoodeng.2010.10.022.
  • Arp, C. G.; Correa, M. J.; Ferrero, C. High-Amylose Resistant Starch as a Functional Ingredient in Breads: A Technological and Microstructural Approach. Food Bioprocess Technol. 2018, 11, 2182–2193. DOI: 10.1007/s11947-018-2168-4.
  • Jiang, F.; Du, C.; Jiang, W.; Wang, L.; Du, S. K. The Preparation, Formation, Fermentability, and Applications of Resistant Starch. Int. J. Biol. Macromol. 2020, 150, 1155–1161. DOI: 10.1016/j.ijbiomac.2019.10.124.
  • Panyoo, A. E.; Emmambux, M. N. Amylose–Lipid Complex Production and Potential Health Benefits: A Mini‐Review. Starch‐Stärke. 2017, 69, 1600203.
  • Yun, P.; Devahastin, S.; Chiewchan, N. In Vitro Glycemic Index, Physicochemical Properties and Sensory Characteristics of White Bread Incorporated with Resistant Starch Powder Prepared by a Novel Spray-Drying Based Method. J. Food Eng. 2021, 294, 110438. DOI: 10.1016/j.jfoodeng.2020.110438.
  • Malumba, P.; Massaux, C.; Deroanne, C.; Masimango, T.; Béra, F. Influence of Drying Temperature on Functional Properties of Wet-Milled Starch Granules. Carbohydr. Polym. 2009, 75, 299–306. DOI: 10.1016/j.carbpol.2008.07.027.
  • Khoozani, A. A.; Bekhit, A. E. D. A.; Birch, J. Effects of Different Drying Conditions on the Starch Content, Thermal Properties and Some of the Physicochemical Parameters of Whole Green Banana Flour. Int. J. Biol. Macromol. 2019, 130, 938–946. DOI: 10.1016/j.ijbiomac.2019.03.010.
  • Clemens, R. A.; Pressman, P. Food Gums: An Overview. Nutr. Today. 2017, 52, 41–43. DOI: 10.1097/NT.0000000000000190.
  • Barak, S.; Mudgil, D.; Taneja, S. Exudate Gums: Chemistry, Properties and Food Applications–A Review. J. Sci. Food Agric. 2020, 100, 2828–2835. DOI: 10.1002/jsfa.10302.
  • Eghbaljoo, H.; Sani, I. K.; Sani, M. A.; Rahati, S.; Mansouri, E.; Molaee-Aghaee, E.; Fatourehchi, N.; Kadi, A.; Arab, A.; Sarabandi, K.; et al. Advances in Plant Gum Polysaccharides; Sources, Techno-Functional Properties, and Applications in the Food industry-A Review. Int. J. Biol. Macromol. 2022, 222, 2327–2340. DOI: 10.1016/j.ijbiomac.2022.10.020.
  • Murthy, H. N. Chemical Constituents and Applications of Gums, Resins, and Latexes of Plant Origin. Gums, Resins and Latexes of Plant Origin: Chemistry, Biological Activities and Uses; Springer, 2021; pp 1–21.
  • Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Rezagholi, F. The Effects of Plantago Major Seed Gum on Steady and Dynamic Oscillatory Shear Rheology of Sunflower Oil‐in‐Water Emulsions. J. Texture Stud. 2018, 49, 536–547. DOI: 10.1111/jtxs.12352.
  • Vilaró, P.; Bennadji, Z.; Budelli, E.; Moyna, G.; Panizzolo, L.; Ferreira, F. Isolation and Characterization of Galactomannans from Prosopis Affinis as Potential Gum Substitutes. Food Hydrocoll. 2018, 77, 711–719. DOI: 10.1016/j.foodhyd.2017.10.038.
  • Khezerlou, A.; Zolfaghari, H.; Banihashemi, S. A.; Forghani, S.; Ehsani, A. Plant Gums as the Functional Compounds for Edible Films and Coatings in the Food Industry: A Review. Polym. Adv. Techs. 2021, 32, 2306–2326. DOI: 10.1002/pat.5293.
  • da Silva, D. A.; Aires, G. C. M.; da Silva Pena, R. Gums—Characteristics and Applications in the Food Industry. In Innovation in the Food Sector through the Valorization of Food and Agro-Food By-Products, Novo de Barros, A., Gouvinhas, I., Eds.; IntechOpen: London, 2021. DOI: 10.5772/intechopen.95078.
  • Fathi, M.; Mohebbi, M.; Koocheki, A. Introducing Prunus Cerasus Gum Exudates: Chemical Structure, Molecular Weight, and Rheological Properties. Food Hydrocoll. 2016, 61, 946–955. DOI: 10.1016/j.foodhyd.2016.07.004.
  • Salarbashi, D.; Tafaghodi, M. An Update on Physicochemical and Functional Properties of Newly Seed Gums. Int. J. Biol. Macromol. 2018, 119, 1240–1247. DOI: 10.1016/j.ijbiomac.2018.06.161.
  • Aponte, M.; Troianiello, G. D.; Di Capua, M.; Romano, R.; Blaiotta, G. Impact of Different Spray-Drying Conditions on the Viability of Wine Saccharomyces cerevisiae Strains. World J. Micr. Biotech. 2016, 32, 1–9.
  • Cao, X.; Li, N.; Qi, G.; Sun, X. S.; Wang, D. Effect of Spray Drying on the Properties of Camelina Gum Isolated from Camelina Seeds. Ind. Crops Prod. 2018, 117, 278–285. DOI: 10.1016/j.indcrop.2018.03.017.
  • Karam, M. C.; Petit, J.; Zimmer, D.; Djantou, E. B.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. DOI: 10.1016/j.jfoodeng.2016.05.001.
  • Salehi, F.; Kashaninejad, M. Effect of Drying Methods on Textural and Rheological Properties of Basil Seed Gum. Int. Food Res. J. 2017, 24, 2090–2096.
  • Zhang, L.; Qiu, J.; Cao, X.; Zeng, X.; Tang, X.; Sun, Y.; Lin, L. Drying Methods, Carrier Materials, and Length of Storage Affect the Quality of Xylooligosaccharides. Food Hydrocoll. 2019, 94, 439–450. DOI: 10.1016/j.foodhyd.2019.03.043.
  • Zain, N. M.; Ghani, M. A.; Kasim, Z. M.; Hashim, H. Effects of Different Drying Methods on the Functional Properties and Physicochemical Characteristics of Chia Mucilage Powder (Salvia Hispanica L.). JSM. 2021, 50, 3603–3615. DOI: 10.17576/jsm-2021-5012-12.
  • Amid, B. T.; Mirhosseini, H. Influence of Different Purification and Drying Methods on Rheological Properties and Viscoelastic Behaviour of Durian Seed Gum. Carbohydr. Polym. 2012, 90, 452–461. DOI: 10.1016/j.carbpol.2012.05.065.
  • Nep, E. I.; Conway, B. R. Physicochemical Characterization of Grewia Polysaccharide Gum: Effect of Drying Method. Carbohydr. Polym. 2011, 84, 446–453. DOI: 10.1016/j.carbpol.2010.12.005.
  • Cui, S. W. Structural Analysis of Polysaccharides. Food Carbohydrates: Chemistry, Physical Properties, and Applications; Taylor Francis: Boca Raton, 2005.
  • Salehi, F.; Kashaninejad, M. Effect of Drying Methods on Rheological and Textural Properties, and Color Changes of Wild Sage Seed Gum. J. Food Sci. Technol. 2015, 52, 7361–7368. DOI: 10.1007/s13197-015-1849-5.
  • Wang, J.; Law, C. L.; Nema, P. K.; Zhao, J. H.; Liu, Z. L.; Deng, L. Z.; Gao, Z. J.; Xiao, H. W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138. DOI: 10.1016/j.jfoodeng.2018.01.002.
  • Hamad, A. M. Evaluation of Dietary Fiber and the Effect on Physicochemical Properties of Foods. IJSRST. 2021, 5, 421–433. DOI: 10.32628/IJSRST218385.
  • Mudgil, D.; Barak, S. Classification, Technological Properties, and Sustainable Sources. In Dietary Fiber: Properties, Recovery, and Applications; Charis M. Galanakis, Ed.; Elsevier: Cambridge, MA, 2019; pp. 27–58.
  • Jahan, K.; Qadri, O. S.; Younis, K. Dietary Fiber as a Functional Food. In Functional Food Products and Sustainable Health, Ahmad, S., Al-Shabib, N., Eds.; Springer: Singapore, 2020, 155–167. DOI: 10.1007/978-981-15-4716-4_10.
  • Hemdane, S.; Jacobs, P. J.; Dornez, E.; Verspreet, J.; Delcour, J. A.; Courtin, C. M. Wheat (Triticum aestivum L.) Bran in Bread Making: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 28–42. DOI: 10.1111/1541-4337.12176.
  • Tejada-Ortigoza, V.; Garcia-Amezquita, L. E.; Serna-Saldívar, S. O.; Welti-Chanes, J. Advances in the Functional Characterization and Extraction Processes of Dietary Fiber. Food Eng. Rev. 2016, 8, 251–271. DOI: 10.1007/s12393-015-9134-y.
  • Tanongkankit, Y.; Chiewchan, N.; Devahastin, S. Evolution of Antioxidants in Dietary Fiber Powder Produced from White Cabbage Outer Leaves: Effects of Blanching and Drying Methods. J. Food Sci. Technol. 2015, 52, 2280–2287. DOI: 10.1007/s13197-013-1203-8.
  • Siriwattananon, L.; Maneerate, J. Effect of Drying Methods on Dietary Fiber Content in Dried Fruit and Vegetable from Non-Toxic Agricultural Field. Geomate. 2016, 11, 2896–2900. DOI: 10.21660/2016.28.1372.
  • Huang, J.; Zhang, M. Effect of Three Drying Methods on the Drying Characteristics and Quality of Okra. Drying Technol. 2016, 34, 900–911. DOI: 10.1080/07373937.2015.1086367.
  • Çelen, S. Effect of Microwave Drying on the Drying Characteristics, Color, Microstructure, and Thermal Properties of Trabzon Persimmon. Foods. 2019, 8, 84. DOI: 10.3390/foods8020084.
  • Singh, C. S.; Paswan, V. K.; Rai, D. C. Process Optimization of Spray Dried Jamun (Syzygium Cumini L.) Pulp Powder. LWT-Food Sci. Technol. 2019, 109, 1–6. DOI: 10.1016/j.lwt.2019.04.011.
  • Kumar, C.; Karim, M.; Joardder, M. U. Intermittent Drying of Food Products: A Critical Review. J. Food Eng. 2014, 121, 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.
  • Khuenpet, K.; Fukuoka, M.; Jittanit, W.; Sirisansaneeyakul, S. Spray Drying of Inulin Component Extracted from Jerusalem Artichoke Tuber Powder Using Conventional and Ohmic-Ultrasonic Heating for Extraction Process. J. Food Eng. 2017, 194, 67–78. DOI: 10.1016/j.jfoodeng.2016.09.009.
  • Chantaro, P.; Devahastin, S.; Chiewchan, N. Production of Antioxidant High Dietary Fiber Powder from Carrot Peels. LWT-Food Sci. Technol. 2008, 41, 1987–1994. DOI: 10.1016/j.lwt.2007.11.013.
  • Garau, M. C.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Air-Drying Temperature on Physico-Chemical Properties of Dietary Fibre and Antioxidant Capacity of Orange (Citrus Aurantium v. Canoneta) by-Products. Food Chem. 2007, 104, 1014–1024. DOI: 10.1016/j.foodchem.2007.01.009.
  • Malekjani, N.; Jafari, S. M. Simulation of Food Drying Processes by Computational Fluid Dynamics (CFD); Recent Advances and Approaches. Trends Food Sci. Technol. 2018, 78, 206–223. DOI: 10.1016/j.tifs.2018.06.006.
  • Zhang, W. P.; Yang, X. H.; Mujumdar, A. S.; Ju, H. Y.; Xiao, H. W. The Influence Mechanism and Control Strategy of Relative Humidity on Hot Air Drying of Fruits and Vegetables: A Review. Drying Technol. 2022, 40, 2217–2234. DOI: 10.1080/07373937.2021.1943669.
  • Zhang, W. K.; Zhang, C.; Qi, B.; Mujumdar, A. S.; Xie, L.; Wang, H.; Ni, J. B.; Xiao, H. W. Hot-Air Impingement Roast Drying of Beef Jerky: Effect of Relative Humidity on Quality Attributes. Drying Technol. 2023, 41, 277–289. DOI: 10.1080/07373937.2022.2049294.
  • Wang, H.; Liu, Z.-L.; Vidyarthi, S. K.; Wang, Q.-H.; Gao, L.; Li, B.-R.; Wei, Q.; Liu, Y.-H.; Xiao, H.-W. Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Microstructure, and Energy Consumption of Potato (Solanum tuberosum L.) Cubes. Drying Technol. 2020, 39, 418–431. DOI: 10.1080/07373937.2020.1818254.
  • Wang, J.; Mujumdar, A. S.; Wang, H.; Fang, X. M.; Xiao, H. W.; Raghavan, V. Effect of Drying Method and Cultivar on Sensory Attributes, Textural Profiles, and Volatile Characteristics of Grape Raisins. Drying Technol. 2021, 39, 495–506. DOI: 10.1080/07373937.2019.1709199.
  • Pei, Y. P.; Sun, B. H.; Vidyarthi, S. K.; Zhu, Z. Q.; Yan, S. K.; Zhang, Y.; Wang, J.; Xiao, H. W. Pulsed Pressure Enhances Osmotic Dehydration and Subsequent Hot Air Drying Kinetics and Quality Attributes of Red Beetroot. Drying Technol. 2023, 41, 262–276. DOI: 10.1080/07373937.2022.2031209.
  • Pei, Y. P.; Vidyarthi, S. K.; Wang, J.; Deng, L. Z.; Wang, H.; Li, G. F.; Zheng, Z. A.; Wu, M.; Xiao, H. W. Effect of Vacuum-Steam Pulsed Blanching (VSPB) on Drying Characteristics and Quality Properties of Garlic Slices. Drying Technol. 2022, 40, 1232–1246. DOI: 10.1080/07373937.2020.1861620.
  • Wang, J.; Xiao, H. W.; Fang, X. M.; Mujumdar, A. S.; Vidyarthi, S. K.; Xie, L. Effect of High-Humidity Hot Air Impingement Blanching and Pulsed Vacuum Drying on Phytochemicals Content, Antioxidant Capacity, Rehydration Kinetics and Ultrastructure of Thompson Seedless Grape. Drying Technol. 2022, 40, 1013–1026. DOI: 10.1080/07373937.2020.1845721.