Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 4
43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quality by design based synthesis and characterization of novel maleyl functionalized albumin solid dry powder for pulmonary targeting

ORCID Icon &
Pages 712-727 | Received 24 Aug 2023, Accepted 07 Jan 2024, Published online: 24 Jan 2024

References

  • Ye, Y.; Ma, Y.; Zhu, J. The Future of Dry Powder Inhaled Therapy: Promising or Discouraging for Systemic Disorders? Int. J. Pharm. 2022, 614, 121457. DOI: 10.1016/j.ijpharm.2022.121457.
  • Parray, H. A.; Shukla, S.; Perween, R.; Khatri, R.; Shrivastava, T.; Singh, V.; Murugavelu, P.; Ahmed, S.; Samal, S.; Sharma, C.; et al. Inhalation Monoclonal Antibody Therapy: A New Way to Treat and Manage Respiratory Infections. Appl. Microbiol. Biotechnol. 2021, 105, 6315–6332. DOI: 10.1007/s00253-021-11488-4.
  • Chan, A. H. Y.; Pleasants, R. A.; Dhand, R.; Tilley, S. L.; Schworer, S. A.; Costello, R. W.; Merchant, R. Digital Inhalers for Asthma or Chronic Obstructive Pulmonary Disease: A Scientific Perspective. Pulm. Ther. 2021, 7, 345–376. DOI: 10.1007/s41030-021-00167-4.
  • Maruyama, S.; Miyajima, M.; Yonemochi, E. Formulation of Biopharmaceutical Dry Powder Inhaler Using the Void Forming Index (VFI) to Detect and Avoid Powder Caking in Dry Powder Inhaler Formulations. Chem. Pharm. Bull. 2022, 70, 245–253. DOI: 10.1248/cpb.c21-00934.
  • Beeh, K.-M.; Kuna, P.; Corradi, M.; Viaud, I.; Guasconi, A.; Georges, G. Comparison of Dry-Powder Inhaler and Pressurized Metered-Dose Inhaler Formulations of Extrafine Beclomethasone Dipropionate/Formoterol Fumarate/Glycopyrronium in Patients with COPD: The TRI-D Randomized Controlled Trial. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 79–89. volume DOI: 10.2147/COPD.S291030.
  • Kaialy, W.; Ticehurst, M.; Nokhodchi, A. Dry Powder Inhalers: Mechanistic Evaluation of Lactose Formulations Containing Salbutamol Sulphate. Int. J. Pharm. 2012, 423, 184–194. DOI: 10.1016/j.ijpharm.2011.12.018.
  • Pilcer, G.; Wauthoz, N.; Amighi, K. Lactose Characteristics and the Generation of the Aerosol. Adv. Drug Deliv. Rev. 2012, 64, 233–256. DOI: 10.1016/j.addr.2011.05.003.
  • Healy, A. M.; Amaro, M. I.; Paluch, K. J.; Tajber, L. Dry Powders for Oral Inhalation Free of Lactose Carrier Particles. Adv. Drug Deliv. Rev. 2014, 75, 32–52. DOI: 10.1016/j.addr.2014.04.005.
  • Okuda, T.; Okamoto, H. Present Situation and Future Progress of Inhaled Lung Cancer Therapy: Necessity of Inhaled Formulations with Drug Delivery Functions. Chem. Pharm. Bull. (Tokyo) 2020, 68, 589–602. DOI: 10.1248/cpb.c20-00086.
  • Benque, B.; Khinast, J. G. Estimating Inter-Patient Variability of Dispersion in Dry Powder Inhalers Using CFD-DEM Simulations. Eur. J. Pharm. Sci. 2021, 156, 105574. DOI: 10.1016/j.ejps.2020.105574.
  • De Boer, A. H.; Chan, H. K.; Price, R. A Critical View on Lactose-Based Drug Formulation and Device Studies for Dry Powder Inhalation: Which Are Relevant and What Interactions to Expect?. Adv. Drug Deliv. Rev. 2012, 64, 257–274. DOI: 10.1016/j.addr.2011.04.004.
  • Bungert, N.; Kobler, M.; Scherließ, R. In-Depth Comparison of Dry Particle Coating Processes Used in DPI Particle Engineering. Pharmaceutics 2021, 13, 580. DOI: 10.3390/pharmaceutics13040580.
  • Ferrari, F.; Cocconi, D.; Bettini, R.; Giordano, F.; Santi, P.; Tobyn, M.; Price, R.; Young, P.; Caramella, C.; Colombo, P. The Surface Roughness of Lactose Particles Can Be Modulated by Wet-Smoothing Using a High-Shear Mixer. AAPS PharmSciTech 2004, 5, e60–74. DOI: 10.1208/pt050460.
  • Jetzer, M. W.; Morrical, B. D. Investigation of Electrostatic Behavior of Dry Powder-Inhaled Model Formulations. J. Pharm. Sci. 2019, 108, 2949–2963. DOI: 10.1016/j.xphs.2019.04.013.
  • Kumon, M.; Suzuki, M.; Kusai, A.; Yonemochi, E.; Terada, K. Novel Approach to DPI Carrier Lactose with Mechanofusion Process with Additives and Evaluation by IGC. Chem. Pharm. Bull. (Tokyo) 2006, 54, 1508–1514. DOI: 10.1248/cpb.54.1508.
  • Mönckedieck, M.; Kamplade, J.; Fakner, P.; Urbanetz, N. A.; Walzel, P.; Steckel, H.; Scherließ, R. Dry Powder Inhaler Performance of Spray Dried Mannitol with Tailored Surface Morphologies as Carrier and Salbutamol Sulphate. Int. J. Pharm. 2017, 524, 351–363. DOI: 10.1016/j.ijpharm.2017.03.055.
  • Chang, T. Z.; Stadmiller, S. S.; Staskevicius, E.; Champion, J. A. Effects of Ovalbumin Protein Nanoparticle Vaccine Size and Coating on Dendritic Cell Processing. Biomater. Sci. 2017, 5, 223–233. DOI: 10.1039/C6BM00500D.
  • Chang, R. Y. K.; Chow, M. Y. T.; Khanal, D.; Chen, D.; Chan, H. K. Dry Powder Pharmaceutical Biologics for Inhalation Therapy, Adv. Drug Deliv. Rev. 2021, 172, 64–79. DOI: 10.1016/j.addr.2021.02.017.
  • Robles, J.; Motheral, L. Hypersensitivity Reaction after Inhalation of a Lactose-Containing Dry Powder Inhaler. J. Pediatr. Pharmacol. Ther. 2014, 19, 206–211. DOI: 10.5863/1551-6776-19.3.206.
  • Rahimpour, Y.; Kouhsoltani, M.; Hamishehkar, H. Alternative Carriers in Dry Powder Inhaler Formulations. Drug Discov. Today 2014, 19, 618–626. DOI: 10.1016/j.drudis.2013.11.013.
  • Shetty, N.; Park, H.; Zemlyanov, D.; Mangal, S.; Bhujbal, S.; Zhou, Q (Tony). Influence of Excipients on Physical and Aerosolization Stability of Spray Dried High-Dose Powder Formulations for Inhalation. Int. J. Pharm. 2018, 544, 222–234. () DOI: 10.1016/j.ijpharm.2018.04.034.
  • Steckel, H.; Bolzen, N. Alternative Sugars as Potential Carriers for Dry Powder Inhalations. Int. J. Pharm. 2004, 270, 297–306. DOI: 10.1016/j.ijpharm.2003.10.039.
  • Kaialy, W.; Nokhodchi, A. Freeze-Dried Mannitol for Superior Pulmonary Drug Delivery via Dry Powder Inhaler. Pharm. Res. 2013, 30, 458–477. DOI: 10.1007/s11095-012-0892-4.
  • Ogáin, O. N.; Li, J.; Tajber, L.; Corrigan, O. I.; Healy, A. M. Particle Engineering of Materials for Oral Inhalation by Dry Powder Inhalers. I—Particles of Sugar Excipients (Trehalose and Raffinose) for Protein Delivery. Int. J. Pharm. 2011, 405, 23–35. DOI: 10.1016/j.ijpharm.2010.11.039.
  • Zeng, X.-M.; MacRitchie, H. B.; Marriott, C.; Martin, G. P. Humidity-Induced Changes of the Aerodynamic Properties of Dry Powder Aerosol Formulations Containing Different Carriers. Int. J. Pharm. 2007, 333, 45–55. DOI: 10.1016/j.ijpharm.2006.09.048.
  • Pilcer, G.; Amighi, K. Formulation Strategy and Use of Excipients in Pulmonary Drug Delivery. Int. J. Pharm. 2010, 392, 1–19. DOI: 10.1016/j.ijpharm.2010.03.017.
  • Joshi, M.; Nagarsenkar, M.; Prabhakar, B. Albumin Nanocarriers for Pulmonary Drug Delivery: An Attractive Approach. J. Drug Deliv. Sci. Technol. 2020, 56, 101529. DOI: 10.1016/j.jddst.2020.101529.
  • Iemma, F.; Spizzirri, U. G.; Puoci, F.; Muzzalupo, R.; Trombino, S.; Picci, N. Radical Crosslinked Albumin Microspheres as Potential Drug Delivery Systems: Preparation and In Vitro Studies. Drug Deliv. 2005, 12, 179–184. DOI: 10.1080/10717540590932278.
  • Das Purkayastha, M.; Borah, A. K.; Saha, S.; Manhar, A. K.; Mandal, M.; Mahanta, C. L. Effect of Maleylation on Physicochemical and Functional Properties of Rapeseed Protein Isolate. J. Food Sci. Technol. 2016, 53, 1784–1797. DOI: 10.1007/s13197-016-2197-9.
  • Lawal, O. S.; Dawodu, M. O. Maleic Anhydride Derivatives of a Protein Isolate: Preparation and Functional Evaluation. Eur. Food Res. Technol. 2007, 226, 187–198. DOI: 10.1007/s00217-006-0525-4.
  • Bezkorovainy, A.; Grohlich, D. Maleylation of Bovine Colostral IgG and Human Serum IgG. Immunochemistry 1972, 9, 137–IN2. DOI: 10.1016/0019-2791(72)90034-1.
  • Ye, S.; Zhang, Y.; Chen, J.; Chen, F.; Weng, H.; Xiao, Q.; Xiao, A. Synthesis and Properties of Maleic Anhydride-Modified Agar with Reversibly Controlled Gel Strength. Int. J. Biol. Macromol. 2022, 201, 364–377. DOI: 10.1016/j.ijbiomac.2021.12.096.
  • Tada, R.; Koide, Y.; Yamamuro, M.; Tanaka, R.; Hidaka, A.; Nagao, K.; Aramaki, Y. Maleylated-BSA Suppresses Lipopolysaccharide-Induced IL-6 Production by Activating the ERK-Signaling Pathway in Murine RAW264.7 Cells. Int. Immunopharmacol. 2014, 19, 5–9. DOI: 10.1016/j.intimp.2013.12.027.
  • Alford, P. B.; Xue, Y.; Thai, S.-F.; Shackelford, R. E. Maleylated-BSA Enhances Production of Nitric Oxide from Macrophages. Biochem. Biophys. Res. Commun. 1998, 245, 185–189. DOI: 10.1006/bbrc.1998.8400.
  • Butler, P. J.; Harris, J. I.; Hartley, B. S.; Lebeman, R. The Use of Maleic Anhydride for the Reversible Blocking of Amino Groups in Polypeptide Chains. Biochem. J. 1969, 112, 679–689. DOI: 10.1042/bj1120679.
  • Gurumukhi, V. C.; Bari, S. B. Fabrication of Efavirenz Loaded Nano-Formulation Using Quality by Design (QbD) Based Approach: Exploring Characterizations and in Vivo Safety. J. Drug Deliv. Sci. Technol. 2020, 56, 101545. DOI: 10.1016/j.jddst.2020.101545.
  • Manoel, J. W.; Primieri, G. B.; Bueno, L. M.; Wingert, N. R.; Volpato, N. M.; Garcia, C. V.; Scherman Schapoval, E. E.; Steppe, M. The Application of Quality by Design in the Development of the Liquid Chromatography Method to Determine Empagliflozin in the Presence of Its Organic Impurities. RSC Adv. 2020, 10, 7313–7320. DOI: 10.1039/c9ra08442h.
  • Patil, K. D.; Bagade, S. B.; Bonde, S. C. In-Vitro and Ex-Vivo Characterization of Novel Mannosylated Gelatin Nanoparticles of Linezolid by Quality-by-Design Approach. J. Drug Deliv. Sci. Technol. 2020, 60, 101976. DOI: 10.1016/j.jddst.2020.101976.
  • van de Berg, D.; Kis, Z.; Behmer, C. F.; Samnuan, K.; Blakney, A. K.; Kontoravdi, C.; Shattock, R.; Shah, N. Quality by Design Modelling to Support Rapid RNA Vaccine Production against Emerging Infectious Diseases. npj Vaccines 2021, 6, 65. DOI: 10.1038/s41541-021-00322-7.
  • Crcarevska, M. S.; Dimitrovska, A.; Sibinovska, N.; Mladenovska, K.; Slavevska Raicki, R.; Dodov, M. G. Implementation of Quality by Design Principles in the Development of Microsponges as Drug Delivery Carriers: Identification and Optimization of Critical Factors Using Multivariate Statistical Analyses and Design of Experiments Studies. Int. J. Pharm. 2015, 489, 58–72. DOI: 10.1016/j.ijpharm.2015.04.038.
  • Snyder, S. L.; Sobocinski, P. Z. An Improved 2,4,6-Trinitrobenzenesulfonic Acid Method for the Determination of Amines. Anal. Biochem. 1975, 64, 284–288. DOI: 10.1016/0003-2697(75)90431-5.
  • Pardeshi, C. V.; Belgamwar, V. S. Controlled Synthesis of N,N,N-Trimethyl Chitosan for Modulated Bioadhesion and Nasal Membrane Permeability. Int. J. Biol. Macromol. 2016, 82, 933–944. DOI: 10.1016/j.ijbiomac.2015.11.012.
  • Marques, M. R. C.; Loebenberg, R.; Almukainzi, M. Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technol. 2011, 18, 15–28. DOI: 10.14227/DT180311P15.
  • Mitani, R.; Ohsaki, S.; Nakamura, H.; Watano, S. Numerical Study on Particle Adhesion in Dry Powder Inhaler Device. Chem. Pharm. Bull. (Tokyo) 2020, 68, 726–736. DOI: 10.1248/cpb.c20-00106.
  • Wang, H.; George, G.; Islam, N. Nicotine-Loaded Chitosan Nanoparticles for Dry Powder Inhaler (DPI) Formulations – Impact of Nanoparticle Surface Charge on Powder Aerosolization. Adv. Powder Technol. 2018, 29, 3079–3086. DOI: 10.1016/j.apt.2018.08.011.
  • Geldart, D.; Abdullah, E. C.; Verlinden, A. Characterisation of Dry Powders. Powder Technol. 2009, 190, 70–74. DOI: 10.1016/j.powtec.2008.04.089.
  • Pardeshi, C. V.; Agnihotri, V. V.; Patil, K. Y.; Pardeshi, S. R.; Surana, S. J. Mannose-Anchored N,N,N-Trimethyl Chitosan Nanoparticles for Pulmonary Administration of Etofylline. Int. J. Biol. Macromol. 2020, 165, 445–459. DOI: 10.1016/j.ijbiomac.2020.09.163.
  • Kaur, H.; Kaur, K.; Singh, A.; Bedi, N.; Singh, B.; Alturki, M. S.; Aldawsari, M. F.; Almalki, A. H.; Haque, S.; Lee, H.-J.; et al. Frankincense Oil-Loaded Nanoemulsion Formulation of Paclitaxel and Erucin: A Synergistic Combination for Ameliorating Drug Resistance in Breast Cancer: In Vitro and In Vivo Study. Front. Pharmacol. 2022, 13, 1020602. DOI: 10.3389/fphar.2022.1020602.
  • Zhong, C.; Chen, M.; Chen, Y.; Yao, F.; Fang, W. Loss of DSTYK Activates Wnt/β-Catenin Signaling and Glycolysis in Lung Adenocarcinoma. Cell Death Dis. 2021, 12, 1122. DOI: 10.1038/s41419-021-04385-1.
  • Daniell, H.; Nair, S. K.; Esmaeili, N.; Wakade, G.; Shahid, N.; Ganesan, P. K.; Islam, M. R.; Shepley-McTaggart, A.; Feng, S.; Gary, E. N.; et al. Debulking SARS-CoV-2 in Saliva Using Angiotensin Converting Enzyme 2 in Chewing Gum to Decrease Oral Virus Transmission and Infection. Mol. Ther. 2022, 30, 1966–1978. DOI: 10.1016/j.ymthe.2021.11.008.
  • Haas, M.; Lenz, T.; Kadletz-Wanke, L.; Heiduschka, G.; Jank, B. J. The Radiosensitizing Effect of β-Thujaplicin, a Tropolone Derivative Inducing S-Phase Cell Cycle Arrest, in Head and Neck Squamous Cell Carcinoma-Derived Cell Lines. Invest. New Drugs 2022, 40, 700–708. DOI: 10.1007/s10637-022-01229-3.
  • Jackson, R. L.; Mao, S. J. T.; Gotto, A. M. Effects of Maleylation on the Lipid-Binding and Immunochemical Properties of Human Plasma High Density Apolipoprotein-A-II. Biochem. Biophys. Res. Commun. 1974, 61, 1317–1324. DOI: 10.1016/S0006-291X(74)80428-6.
  • Habeeb, A. F. S.; Atassi, M. Enzymic and Immunochemical Properties of Lysozyme—V Derivatives Modified at Lysine Residues by Guanidination, Acetylation, Succinylation or Maleylation. Immunochemistry 1971, 8, 1047–1059. DOI: 10.1016/0019-2791(71)90493-9.
  • Amighi, F.; Emam-Djomeh, Z.; Labbafi-Mazraeh-Shahi, M. Effect of Different Cross-Linking Agents on the Preparation of Bovine Serum Albumin Nanoparticles. J. Iran. Chem. Soc. 2020, 17, 1223–1235. DOI: 10.1007/s13738-019-01850-9.
  • Qiu, J.; Zhang, H.; Wang, Z.; Liu, S.; Regenstein, J. M. Response Surface Methodology for the Synthesis of an Auricularia auriculajudae polysaccharides-CDDP Complex. Int. J. Biol. Macromol. 2016, 93, 333–343. DOI: 10.1016/j.ijbiomac.2016.06.066.
  • Wang, M.; Fu, Y.; Chen, G.; Shi, Y.; Li, X.; Zhang, H.; Shen, Y. Fabrication and Characterization of Carboxymethyl Chitosan and Tea Polyphenols Coating on Zein Nanoparticles to Encapsulate β-Carotene by Anti-Solvent Precipitation Method. Food Hydrocoll. 2018, 77, 577–587. DOI: 10.1016/j.foodhyd.2017.10.036.
  • Chatterjee, S.; Mukherjee, T. K. Insights into the Morphology of Human Serum Albumin and Sodium Dodecyl Sulfate Complex: A Spectroscopic and Microscopic Approach. J. Colloid Interface Sci. 2016, 478, 29–35. DOI: 10.1016/j.jcis.2016.05.055.
  • Sadler, P. J.; Tucker, A. Proton NMR Studies of Bovine Serum Albumin. Assignment of Spin Systems. Eur. J. Biochem. 1992, 205, 631–643. DOI: 10.1111/j.1432-1033.1992.tb16821.x.
  • Borzova, V. A.; Markossian, K. A.; Chebotareva, N. A.; Kleymenov, S. Y.; Poliansky, N. B.; Muranov, K. O.; Stein-Margolina, V. A.; Shubin, V. V.; Markov, D. I.; Kurganov, B. I. Kinetics of Thermal Denaturation Andaggregation of Bovine Serum Albumin. PLoS One 2016, 11, e0153495. DOI: 10.1371/journal.pone.0153495.
  • Alkahtani, M. E.; Aodah, A. H.; Abu Asab, O. A.; Basit, A. W.; Orlu, M.; Tawfik, E. A. Fabrication and Characterization of Fast-Dissolving Films Containing Escitalopram/Quetiapine for the Treatment of Major Depressive Disorder. Pharmaceutics 2021, 13, 891. DOI: 10.3390/pharmaceutics13060891.
  • Bauer, K. N.; Simon, J.; Mailänder, V.; Landfester, K.; Wurm, F. R. Polyphosphoester Surfactants as General Stealth Coatings for Polymeric Nanocarriers. Acta Biomater. 2020, 116, 318–328. DOI: 10.1016/j.actbio.2020.09.016.
  • Shetty, A.; Srinivasan, G. Advancements in Dry Powder Inhaler. Asian J. Pharm. Clin. Res. 2017, 10, 8–12. DOI: 10.3390/pharmaceutics14112495.
  • Sarode, A.; Patel, P.; Vargas-Montoya, N.; Allawzi, A.; Zhilin-Roth, A.; Karmakar, S.; Boeglin, L.; Deng, H.; Karve, S.; DeRosa, F. Inhalable Dry Powder Product (DPP) of mRNA Lipid Nanoparticles (LNPs) for Pulmonary Delivery. Drug Deliv. Transl. Res 2023, 14, 360–372. DOI: 10.1007/s13346-023-01402-y.
  • Wang, Q.; Ge, L.; Wang, L.; Xu, Y.; Miao, S.; Yu, G.; Shen, Y. Formulation Optimization and in Vitro Antibacterial Ability Investigation of Azithromycin Loaded FDKP Microspheres Dry Powder Inhalation. Chin. Chem. Lett. 2021, 32, 1071–1076. DOI: 10.1016/j.cclet.2020.03.062.
  • Xi, Q.; Miao, J.; Cao, Z.; Wang, H. Inhalable Aerosol Microparticles with Low Carrier Dosage and High Fine Particle Fraction Prepared by Spray-Freeze-Drying. Int. J. Pharm. X 2023, 5, 100158. DOI: 10.1016/j.ijpx.2023.100158.
  • Xi, Q. Allyl Isothiocyanate Dry Powder Inhaler Based on Cyclodextrin-Metal Organic Frameworks for Pulmonary Delivery. iScience 2022, 26(1), 105910. DOI: 10.1016/j.isci.2022.105910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.