Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 5
108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modified refractance window drying of jamun pulp (Syzygium cumini) based on innovative infrared and microwave radiation techniques

ORCID Icon, , , , &
Pages 775-794 | Received 11 Sep 2023, Accepted 08 Feb 2024, Published online: 16 Mar 2024

References

  • Warrier, P. K.; Nambiar, V.; Ramankutty, C. Indian Medicinal Plants-A Compendium of 500 Species, Orient Longman Ltd. Chennai 1996, 3, 38–90.
  • Kumar, K. Value Addition of Some Underutilized Fruit Crops. Adv. Life. Sci. 2018, 5, 2604–2618.
  • Periyathambi, R. Jamun-the Potential Untapped. Horticulture 2007, 1, 30–32.
  • Orjuela-Palacio, J. M.; Lanari, M. C. The Impact of Moisture Sorption Properties on the Color and Bioactives Concentrations of Black Currant-Yerba Mate Instant Drinks. JBR 2016, 6, 303–319. DOI: 10.3233/JBR-160131.
  • Sonawane, S. K.; Arya, S. S. Effect of Drying and Storage on Bioactive Components of Jambhul and Wood Apple. J. Food Sci. Technol. 2015, 52, 2833–2841. DOI: 10.1007/s13197-014-1321-y.
  • Jebita, R. S.; Allwin, J. S. Antioxidant Activity, Total Phenol, Flavonoid, and Anthocyanin Contents of Jamun (Syzygium Cumini) Pulp Powder. Asian J. Pharm. Clin. Res. 2016, 9, 361–363.
  • Nindo, C. I.; Tang, J.; Powers, J. R.; Bolland, K. Energy Consumption During Refractance Window® Evaporation of Selected Berry Juices. Int. J. Energy Res. 2004, 28, 1089–1100. DOI: 10.1002/er.1017.
  • Nindo, C. I.; Powers, J. R.; Tang, J. Influence of Refractance Window Evaporation on Quality of Juices from Small Fruits. LWT 2007, 40, 1000–1007. DOI: 10.1016/j.lwt.2006.07.006.
  • Caparino, O. A.; Nindo, C. I.; Tang, J.; Sablani, S. S.; Chew, B. P.; Mathison, B. D.; Fellman, J. K.; Powers, J. R. Physical and Chemical Stability of Refractance Window®–Dried Mango (Philippine ‘Carabao’ Var.) Powder during Storage. Dry. Technol. 2017, 35, 25–37. DOI: 10.1080/07373937.2016.1157601.
  • Nindo, C. I.; Tang, J. Refractance Window Dehydration Technology: A Novel Contact Drying Method. Dry. Technol. 2007, 25, 37–48. DOI: 10.1080/07373930601152673.
  • Abonyi, B. I.; Feng, H.; Tang, J.; Edwards, C. G.; Chew, B. P.; Mattinson, D. S.; Fellman, J. K. Quality Retention in Strawberry and Carrot Purees Dried with Refractance WindowTM System. J. Food Sci. 2002, 67, 1051–1056. DOI: 10.1111/j.1365-2621.2002.tb09452.x.
  • Nindo, C. I.; Sun, T.; Wang, S. W.; Tang, J.; Powers, J. R. Evaluation of Drying Technologies for Retention of Physical Quality and Antioxidants in Asparagus (Asparagus Officinalis, L.). LWT-Food Sci. Technol. 2003, 36, 507–516. DOI: 10.1016/S0023-6438(03)00046-X.
  • Gupta, N.; Anjum, N. Infrared Heating and Its Application in Food Processing SERB DST View Project SERB-DST 2020.
  • Joudi-Sarighayeh, F.; Abbaspour-Gilandeh, Y.; Kaveh, M.; Szymanek, M.; Kulig, R. Response Surface Methodology Approach for Predicting Convective/Infrared Drying, Quality, Bioactive and Vitamin C Characteristics of Pumpkin Slices. Foods 2023, 12, 1114. DOI: 10.3390/foods12051114.
  • Jihène, L, Institut National Agronomique de Tunisie. Impact of Infra-Red Drying Temperature on Total Phenolic and Flavonoid Contents, on Antioxidant and Antibacterial Activities of Ginger (Zingiber officinale Roscoe). IOSR-JESTFT 2013, 6, 38–46. DOI: 10.9790/2402-0653846.
  • Bhattacharya, M.; Basak, T. A Comprehensive Analysis on the Effect of Shape on the Microwave Heating Dynamics of Food Materials. Innov. Food Sci. Emerg. Technol. 2017, 39, 247–266. DOI: 10.1016/j.ifset.2016.12.002.
  • Horuz, E.; Maskan, M. Hot Air and Microwave Drying of Pomegranate (Punica Granatum L.) Arils. J. Food Sci. Technol. 2015, 52, 285–293. DOI: 10.1007/s13197-013-1032-9.
  • Paul, I. D.; Das, M. Effect of Freeze, Microwave-Convective Hot Air, Vacuum and Dehumidified Air Drying on Total Phenolics Content, Anthocyanin Content and Antioxidant Activity of Jamun (Syzygium cumini L.) Pulp. J. Food Sci. Technol. 2018, 55, 2410–2419. DOI: 10.1007/s13197-018-3158-2.
  • Zaki, N. A. M.; Rahman, N. A.; Zamanhuri, N. A.; Hashib, S. A. Ascorbic Acid Content and Proteolytic Enzyme Activity of Microwave-Dried Pineapple Stem and Core. Chem. Eng. Trans. 2017, 56, 1369–1374. DOI: 10.3303/CET1756229.
  • Association of Official Agricultural Chemists. Official Methods of Analysis. Washington, DC: AOAC, 1990.
  • Durigon, A.; Parisotto, E. I. B.; Carciofi, B. A. M.; Laurindo, J. B. Heat Transfer and Drying Kinetics of Tomato Pulp Processed by Cast-Tape Drying. Dry. Technol. 2018, 36, 160–168. DOI: 10.1080/07373937.2017.1304411.
  • Crank, J. The Mathematics of Diffusion. Oxford: Oxford University Press, 1979.
  • Balasubramanian, P.; Sutar, P. P.; Durgawati  . Development of a Novel Non-Water Infrared Refractance Window Drying Method for Malabar Spinach: Optimization of Process Parameters Using Drying Kinetics, Mass Transfer, and Powder Characterization. Dry. Technol. 2023, 41 (10), 1620–1635. DOI: 10.1080/07373937.2023.2169865.
  • Dhua, S.; Kheto, A.; Singh Sharanagat, V.; Singh, L.; Kumar, K.; Nema, P. K. Quality Characteristics of Sand, Pan and Microwave Roasted Pigmented Wheat (Triticum Aestivum). Food Chem. 2021, 365, 130372. DOI: 10.1016/j.foodchem.2021.130372.
  • Kumar, S. R.; Sadiq, M. B.; Anal, A. K. Comparative Study of Physicochemical and Functional Properties of Pan and Microwave Cooked Underutilized Millets (Proso and Little). LWT 2020, 128, 109465. DOI: 10.1016/j.lwt.2020.109465.
  • Eastman, S. A.; Kim, S.; Page, K. A.; Rowe, B. W.; Kang, S.; Soles, C. L.; Yager, K. G. Effect of Confinement on Structure, Water Solubility, and Water Transport in NaF Ion Thin Films. 2012.
  • Singh Yadav, B.; Kumar Sahu, R.; Kumar Pramanick, A.; Mishra, T.; Alam, A.; Bharti, M.; Mukherjee, S.; Kumar, S.; Nayar, S. Collagen Functionalized Graphene Sheets Decorated with in Situ Synthesized Nano Hydroxyapatite Electrospun into Fibers. Mater. Today Commun. 2019, 18, 167–175. DOI: 10.1016/j.mtcomm.2018.11.005.
  • Sadin, R.; Chegini, G. R.; Sadin, H. The Effect of Temperature and Slice Thickness on Drying Kinetics Tomato in the Infrared Dryer. Heat Mass Transf. 2014, 50, 501–507. DOI: 10.1007/s00231-013-1255-3.
  • Sadeghi, E.; Haghighi Asl, A.; Movagharnejad, K. Optimization and Quality Evaluation of Infrared-Dried Kiwifruit Slices. Food Sci. Nutr. 2020, 8, 720–734. DOI: 10.1002/fsn3.1253.
  • Nindo, C. I.; Feng, H.; Shen, G. Q.; Tang, J.; Kang, D. H. Energy Utilization and Microbial Reduction in a New Film Drying System. J. Food Process. Preserv. 2003, 27, 117–136. DOI: 10.1111/j.1745-4549.2003.tb00506.x.
  • Ghanem, N.; Mihoubi, D.; Kechaou, N.; Mihoubi, N. B. Microwave Dehydration of Three Citrus Peel Cultivars: Effect on Water and Oil Retention Capacities, Color, Shrinkage and Total Phenols Content. Ind. Crops Prod. 2012, 40, 167–177. DOI: 10.1016/j.indcrop.2012.03.009.
  • Li, L.; Zhang, M.; Bhandari, B.; Zhou, L. LF-NMR Online Detection of Water Dynamics in Apple Cubes during Microwave Vacuum Drying. Dry. Technol. 2018, 36, 2006–2015. DOI: 10.1080/07373937.2018.1432643.
  • Pu, Y. Y.; Zhao, M.; O’Donnell, C.; Sun, D. W. Nondestructive Quality Evaluation of Banana Slices during Microwave Vacuum Drying Using Spectral and Imaging Techniques. Dry. Technol. 2018, 36, 1542–1553. DOI: 10.1080/07373937.2017.1415929.
  • Chayjan, R. A.; Kaveh, M.; Khayati, S. Modeling Some Drying Characteristics of Sour Cherry (Prunus Cerasus L.) under Infrared Radiation Using Mathematical Models and Artificial Neural Networks. Agric. Eng. Int. CIGR J. 2014, 16, 265–279.
  • Joseph Bassey, E.; Cheng, J. H.; Sun, D. W. Improving Drying Kinetics, Physicochemical Properties and Bioactive Compounds of Red Dragon Fruit (Hylocereus Species) by Novel Infrared Drying. Food Chem. 2022, 375, 131886. DOI: 10.1016/j.foodchem.2021.131886.
  • Sutar, P. P.; Prasad, S. Modeling Microwave Vacuum Drying Kinetics and Moisture Diffusivity of Carrot Slices. Dry. Technol. 2007, 25, 1695–1702. DOI: 10.1080/07373930701590947.
  • Kammoun Bejar, A.; Ghanem, N.; Mihoubi, D.; Kechaou, N.; Boudhrioua Mihoubi, N. Effect of Infrared Drying on Drying Kinetics, Color, Total Phenols and Water and Oil Holding Capacities of Orange (Citrus Sinensis) Peel and Leaves. Int. J. Food Eng. 2011, 7, DOI: 10.2202/1556-3758.2222.
  • Chua, K. J.; Hawlader, M. N. A.; Chou, S. K.; Ho, J. C. On the Study of Time-Varying Temperature Drying - Effect on Drying Kinetics and Product Quality. Dry. Technol. 2002, 20, 1559–1577. DOI: 10.1081/DRT-120014052.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019, 241, 75–87. DOI: 10.1016/j.jfoodeng.2018.08.008.
  • Chaovanalikit, A.; Wrolstad, R. E. Total Anthocyanins and Total Phenolics of Fresh and Processed Cherries and Their Antioxidant Properties. J. Food Sci. 2004, 69, 67–72. DOI: 10.1111/j.1365-2621.2004.tb17858.x.
  • Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57, 1337–1343. DOI: 10.1021/jf802507j.
  • Izli, N.; Izli, G.; Taskin, O. Influence of Different Drying Techniques on Drying Parameters of Mango. Food Science and Technology 2017, 37, 604–612.
  • Parveez Zia, M.; Alibas, I. The Effect of Different Drying Techniques on Color Parameters, Ascorbic Acid Content, Anthocyanin and Antioxidant Capacities of Cornelian Cherry. Food Chem. 2021, 364, 130358. DOI: 10.1016/j.foodchem.2021.130358.
  • Zielinska, M.; Zielinska, D. Effects of Freezing, Convective and Microwave-Vacuum Drying on the Content of Bioactive Compounds and Color of Cranberries. LWT 2019, 104, 202–209. DOI: 10.1016/j.lwt.2019.01.041.
  • Saha, S. K.; Dey, S.; Chakraborty, R. Effect of Microwave Power on Drying Kinetics, Structure, Color, and Antioxidant Activities of Corncob. J. Food Process Eng. 2019, 42, 1–13. DOI: 10.1111/jfpe.13021.
  • Charmongkolpradit, S.; Somboon, T.; Phatchana, R.; Sang-Aroon, W.; Tanwanichkul, B. Influence of Drying Temperature on Anthocyanin and Moisture Contents in Purple Waxy Corn Kernel Using a Tunnel Dryer. Case Stud. Therm. Eng. 2021, 25, 100886. DOI: 10.1016/j.csite.2021.100886.
  • Alpizar-Reyes, E.; Carrillo-Navas, H.; Gallardo-Rivera, R.; Varela-Guerrero, V.; Alvarez-Ramirez, J.; Pérez-Alonso, C. Functional Properties and Physicochemical Characteristics of Tamarind (Tamarindus Indica L.) Seed Mucilage Powder as a Novel Hydrocolloid. J. Food Eng. 2017, 209, 68–75. DOI: 10.1016/j.jfoodeng.2017.04.021.
  • Amid, B. T.; Mirhosseini, H. Optimisation of Aqueous Extraction of Gum from Durian (Durio Zibethinus) Seed: A Potential, Low Cost Source of Hydrocolloid. Food Chem. 2012, 132, 1258–1268. DOI: 10.1016/j.foodchem.2011.11.099.
  • Santos, S.; de, J. L.; Canto, H. K. F.; da Silva, L. H. M.; Rodrigues, A. M. D C. Characterization and Properties of Purple Yam (Dioscorea Trifida) Powder Obtained by Refractance Window Drying. Dry. Technol. 2022, 40, 1103–1113. DOI: 10.1080/07373937.2020.1847140.
  • Hatami, T.; dos Santos, L. C.; Zabot, G. L.; de Almeida Pontes, P. V.; Caldas Batista, E. A.; Innocentini Mei, L. H.; Martínez, J. Integrated Supercritical Extraction and Supercritical Adsorption Processes from Passion Fruit by-Product: Experimental and Economic Analyses. J. Supercrit. Fluids 2020, 162, 104856. DOI: 10.1016/j.supflu.2020.104856.
  • Caparino, O. A.; Sablani, S. S.; Tang, J.; Syamaladevi, R. M.; Nindo, C. I. Water Sorption, Glass Transition, and Microstructures of Refractance Window- and Freeze-Dried Mango (Philippine “Carabao” Var.) Powder. Dry. Technol. 2013, 31, 1969–1978. DOI: 10.1080/07373937.2013.805143.
  • Shirkole, S. S.; Jayabalan, R.; Sutar, P. P. Dry Sterilization of Paprika (Capsicum Annuum L.) by Short Time Intensive Microwave-Infrared Radiation: Part I—Establishment of Process Using Glass Transition, Sorption, and Quality Degradation Kinetic Parameters. Innov. Food Sci. Emerg. Technol. 2020, 62, 102345. DOI: 10.1016/j.ifset.2020.102345.
  • Skåra, T.; Løvdal, T.; Skipnes, D.; Nwabisa Mehlomakulu, N.; Mapengo, C. R.; Otema Baah, R.; Emmambux, M. N. Drying of Vegetable and Root Crops by Solar, Infrared, Microwave, and Radio Frequency as Energy Efficient Methods: A Review. Food Rev. Int. 2023, 39, 7197–7217. DOI: 10.1080/87559129.2022.2148688.
  • Leishangthem, C.; Sutar, P. P. Innovative High Power Short Time Microwave Finish Drying Cum Decontamination Method for Producing Hot Curry Spice Mix (Garam Masala) with Enhanced Quality Characteristics. Dry. Technol. 2023, 1–15. DOI: 10.1080/07373937.2023.2285890.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.