Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 5
55
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modeling and techno-economic optimization of the supercritical drying of silica aerogels

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 812-835 | Received 11 Oct 2023, Accepted 09 Feb 2024, Published online: 25 Feb 2024

References

  • Zhang, X.; Cheng, X.; Si, Y.; Yu, J.; Ding, B. Elastic and Highly Fatigue Resistant ZrO2-SiO2 Nanofibrous Aerogel with Low Energy Dissipation for Thermal Insulation. Chem. Eng. J. 2021, 433, 133628. DOI: 10.1016/j.cej.2021.133628.
  • Ma, S.; Wang, C.; Cong, B.; Zhou, H.; Zhao, X.; Chen, C.; Wang, D.; Liu, C.; Qu, C. Anisotropic All-Aromatic Polyimide Aerogels with Robust and High-Temperature Stable Properties for Flexible Thermal Protection. Chem. Eng. J. 2022, 431, 134047. DOI: 10.1016/j.cej.2021.134047.
  • Liu, H.; Du, H.; Zheng, T.; Liu, K.; Ji, X.; Xu, T.; Zhang, X.; Si, C. Cellulose Based Composite Foams and Aerogels for Advanced Energy Storage Devices. Chem. Eng. J. 2021, 426, 130817. DOI: 10.1016/j.cej.2021.130817.
  • Qin, Z.; Lv, Y.; Fang, X.; Zhao, B.; Niu, F.; Min, L.; Pan, K. Ultralight Polypyrrole Crosslinked Nanofiber Aerogel for Highly Sensitive Piezoresistive Sensor. Chem. Eng. J. 2022, 427, 131650. DOI: 10.1016/j.cej.2021.131650.
  • Li, Z.-M.; Zhu, S.-X.; Mao, F.-F.; Zhou, Y.; Zhu, W.; Tao, D.-J. CTAB-Controlled Synthesis of Phenolic Resin-Based Nanofiber Aerogels for Highly Efficient and Reversible SO2 Capture. Chem. Eng. J. 2021, 431, 133715. DOI: 10.1016/j.cej.2021.133715.
  • Ma, W.; Jiang, Z.; Lu, T.; Xiong, R.; Huang, C. Lightweight, Elastic and Superhydrophobic Multifunctional Nanofibrous Aerogel for Self-Cleaning, Oil/Water Separation and Pressure Sensing. Chem. Eng. J. 2022, 430, 132989. DOI: 10.1016/j.cej.2021.132989.
  • Castaldo, R.; Avolio, R.; Cocca, M.; Errico, M. E.; Lavorgna, M.; Šalplachta, J.; Santillo, C.; Gentile, G. Hierarchically Porous Hydrogels and Aerogels Based on Reduced Graphene Oxide, Montmorillonite and Hyper-Crosslinked Resins for Water and Air Remediation. Chem. Eng. J. 2022, 430, 133162. DOI: 10.1016/j.cej.2021.133162.
  • Zhao, X.; Yi, X.; Song, J.; Yuan, X.; Yu, S.; Nie, Y.; Zhang, J.; Cao, G. Mesoporous and Flexible Polyimide Aerogel as Highly Active Catalytic Membrane for AO7 Degradation by Peroxymonosulfate Activation. Chem. Eng. J. 2021, 431, 134286. DOI: 10.1016/j.cej.2021.134286.
  • Zheng, Y.; Ma, W.; Yang, Z.; Zhang, H.; Ma, J.; Li, T.; Niu, H.; Zhou, Y.; Yao, Q.; Chang, J.; et al. An Ultralong Hydroxyapatite Nanowire Aerogel for Rapid Hemostasis and Wound Healing. Chem. Eng. J. 2022, 430, 132912. DOI: 10.1016/j.cej.2021.132912.
  • Aspen Aerogels Industrial Aerogel Insulation - Home, Aspen Aerogels Industrial Aerogel Insulation. n.d.). https://www.aerogel.com/. (accessed Apr 18, 2021).
  • Fiberglass Aerogel Insulation Blanket. n.d.). https://www.joda-tech.com/aerogel-material/aerogel-insulation-blanket.html. (accessed Apr 18, 2021).
  • Industrial Insulation, Cabot Corporation. n.d.). https://www.cabotcorp.com/solutions/applications/oil-gas-and-mining/industrial-insulation. (accessed Apr 18, 2021).
  • Panels | Active Aerogels. (n.d.). https://www.activeaerogels.com/flexible-panel/. (accessed Apr 18, 2021).
  • Kiran, E.; Debenedetti, P. G.; Peters, C. J. Supercritical Fluids: Fundamentals and Applications, Springer Science & Business Media: Kemer, Antalya, Turkey, 2012.
  • Sun, Y.-P. Supercritical Fluid Technology in Materials Science and Engineering: Syntheses: Properties, and Applications, CRC Press: New York, USA, 2002.
  • Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, Springer Science & Business Media: New York, USA, 2011.
  • Salgado, M.; Santos, F.; Rodríguez-Rojo, S.; Reis, R. L.; Duarte, A. R. C.; Cocero, M. J. Development of Barley and Yeast β-Glucan Aerogels for Drug Delivery by Supercritical Fluids. J. CO2 Util. 2017, 22, 262–269. DOI: 10.1016/j.jcou.2017.10.006.
  • Elmanovich, I. V.; Pryakhina, T. A.; Vasil’ev, V. G.; Gallyamov, M. O.; Muzafarov, A. M. A Study of the Hydrosilylation Approach to a One-Pot Synthesis of Silicone Aerogels in Supercritical CO2. J. Supercrit. Fluids 2018, 133, 512–518. DOI: 10.1016/j.supflu.2017.11.017.
  • Goimil, L.; Braga, M. E. M.; Dias, A. M. A.; Gómez-Amoza, J. L.; Concheiro, A.; Alvarez-Lorenzo, C.; de Sousa, H. C.; García-González, C. A. Supercritical Processing of Starch Aerogels and Aerogel-Loaded Poly (ε-Caprolactone) Scaffolds for Sustained Release of Ketoprofen for Bone Regeneration. J. CO2 Util. 2017, 18, 237–249. DOI: 10.1016/j.jcou.2017.01.028.
  • Wang, X.; Zhang, Y.; Jiang, H.; Song, Y.; Zhou, Z.; Zhao, H. Fabrication and Characterization of Nano-Cellulose Aerogels via Supercritical CO2 Drying Technology. Mater. Lett. 2016, 183, 179–182. DOI: 10.1016/j.matlet.2016.07.081.
  • Błaszczyński, T.; Ślosarczyk, A.; Morawski, M. Synthesis of Silica Aerogel by Supercritical Drying Method. Procedia Eng. 2013, 57, 200–206. DOI: 10.1016/j.proeng.2013.04.028.
  • Martín, Á.; Navarrete, A.; Bermejo, M. D. Applications of Supercritical Technologies to CO2 Reduction: Catalyst Development and Process Intensification. J. Supercrit. Fluids 2018, 134, 141–149. DOI: 10.1016/j.supflu.2017.11.021.
  • Poling, B. E.; Prausnitz, J. M.; O’connell, J. P. Properties of Gases and Liquids, McGraw-Hill Education: New York, USA, 2001.
  • Griffin, J. S.; Mills, D. H.; Cleary, M.; Nelson, R.; Manno, V. P.; Hodes, M. Continuous Extraction Rate Measurements during Supercritical CO2 Drying of Silica Alcogel. J. Supercrit. Fluids 2014, 94, 38–47. DOI: 10.1016/j.supflu.2014.05.020.
  • Hatami, T.; Viganó, J.; Innocentini Mei, L. H.; Martínez, J. Production of Alginate-Based Aerogel Particles Using Supercritical Drying: Experiment, Comprehensive Mathematical Model, and Optimization. J. Supercrit. Fluids 2020, 160, 104791. DOI: 10.1016/j.supflu.2020.104791.
  • Sanz-Moral, L. M.; Rueda, M.; Mato, R.; Martín, Á. View Cell Investigation of Silica Aerogels during Supercritical Drying: Analysis of Size Variation and Mass Transfer Mechanisms. J. Supercrit. Fluids 2014, 92, 24–30. DOI: 10.1016/j.supflu.2014.05.004.
  • Özbakır, Y.; Erkey, C. Experimental and Theoretical Investigation of Supercritical Drying of Silica Alcogels. J. Supercrit. Fluids 2015, 98, 153–166. DOI: 10.1016/j.supflu.2014.12.001.
  • Şahin, İ.; Uzunlar, E.; Erkey, C. Investigation of Kinetics of Supercritical Drying of Alginate Alcogel Particles. J. Supercrit. Fluids 2019, 146, 78–88. DOI: 10.1016/j.supflu.2018.12.019.
  • Lazrag, M.; Lemaitre, C.; Castel, C.; Hannachi, A.; Barth, D. Aerogel Production by Supercritical Drying of Organogels: Experimental Study and Modelling Investigation of Drying Kinetics. J. Supercrit. Fluids 2018, 140, 394–405. DOI: 10.1016/j.supflu.2018.07.016.
  • Selmer, I.; Behnecke, A.-S.; Farrell, P.; Bueno, A.; Gurikov, P.; Smirnova, I. Model Development for sc-Drying Kinetics of Aerogels: Part 2. Packed Bed of Spherical Particles. J. Supercrit. Fluids 2019, 147, 149–161. DOI: 10.1016/j.supflu.2018.07.006.
  • Lebedev, A. E.; Katalevich, A. M.; Menshutina, N. V. Modeling and Scale-up of Supercritical Fluid Processes. Part I: Supercritical Drying. J. Supercrit. Fluids 2015, 106, 122–132. DOI: 10.1016/j.supflu.2015.06.010.
  • Masmoudi, Y.; Rigacci, A.; Ilbizian, P.; Cauneau, F.; Achard, P. Diffusion during the Supercritical Drying of Silica Gels. Drying Technol. 2006, 24, 1121–1125. DOI: 10.1080/07373930600778270.
  • Golubev, E. V.; Suslova, E. N.; Lebedev, A. E. Computer Simulation of Hydrodynamics and Mass Transfer of Supercritical Drying of Aerogels in Laboratory and Industrial Scale Apparatuses. Russ. J. Gen. Chem. 2023, 93, 3238–3244. DOI: 10.1134/S1070363223120241.
  • Şahin, İ.; Uzunlar, E.; Erkey, C. Investigation of the Effect of Gel Properties on Supercritical Drying Kinetics of Ionotropic Alginate Gel Particles. J. Supercrit. Fluids 2019, 152, 104571. DOI: 10.1016/j.supflu.2019.104571.
  • Della Porta, G.; Del Gaudio, P.; De Cicco, F.; Aquino, R. P.; Reverchon, E. Supercritical Drying of Alginate Beads for the Development of Aerogel Biomaterials: Optimization of Process Parameters and Exchange Solvents. Ind. Eng. Chem. Res. 2013, 52, 12003–12009. DOI: 10.1021/ie401335c.
  • Shimoyama, Y.; Ogata, Y.; Ishibashi, R.; Iwai, Y. Drying Processes for Preparation of Titania Aerogel Using Supercritical Carbon Dioxide. Chem. Eng. Res. Des. 2010, 88, 1427–1431. DOI: 10.1016/j.cherd.2010.02.018.
  • Mißfeldt, F.; Gurikov, P.; Lölsberg, W.; Weinrich, D.; Lied, F.; Fricke, M.; Smirnova, I. Continuous Supercritical Drying of Aerogel Particles: Proof of Concept. Ind. Eng. Chem. Res. 2020, 59, 11284–11295. DOI: 10.1021/acs.iecr.0c01356.
  • Lebedev, A.; Suslova, E.; Troyankin, A.; Lovskaya, D. Investigation of Aerogel Production Processes: Solvent Exchange under High Pressure Combined with Supercritical Drying in One Apparatus. Gels 2021, 7, 4. DOI: 10.3390/gels7010004.
  • Kirkbir, F.; Murata, H.; Meyers, D.; Chaudhuri, S. R. Drying of Aerogels in Different Solvents between Atmospheric and Supercritical Pressures. J. Non-Cryst. Solids 1998, 225, 14–18. DOI: 10.1016/S0022-3093(98)00003-9.
  • Stojanovic, A.; Zhao, S.; Angelica, E.; Malfait, W. J.; Koebel, M. M. Three Routes to Superinsulating Silica Aerogel Powder. J. Sol-Gel Sci. Technol. 2019, 90, 57–66. DOI: 10.1007/s10971-018-4879-4.
  • Menshutina, N.; Tsygankov, P.; Khudeev, I.; Lebedev, A. Intensification Methods of Supercritical Drying for Aerogels Production. Drying Technol. 2020, 40, 1278–1291. DOI: 10.1080/07373937.2020.1866005.
  • Tyn, M. T.; Calus, W. F. Diffusion Coefficients in Dilute Binary Liquid Mixtures. J. Chem. Eng. Data 1975, 20, 106–109. DOI: 10.1021/je60064a006.
  • He, C.-H.; Yu, Y.-S. New Equation for Infinite-Dilution Diffusion Coefficients in Supercritical and High-Temperature Liquid Solvents. Ind. Eng. Chem. Res. 1998, 37, 3793–3798. DOI: 10.1021/ie970898+.
  • Mendo-Sánchez, R. P.; Arroyo-Hernández, C. A.; Pimentel-Rodas, A.; Galicia-Luna, L. A. Simultaneous Viscosity and Density Measurements and Modeling of 2-Alcohols at Temperatures between (291 and 353) K and Pressures up to 50 MPa. Fluid Phase Equilib. 2020, 514, 112559. DOI: 10.1016/j.fluid.2020.112559.
  • Heidaryan, E.; Hatami, T.; Rahimi, M.; Moghadasi, J. Viscosity of Pure Carbon Dioxide at Supercritical Region: Measurement and Correlation Approach. J. Supercrit. Fluids 2011, 56, 144–151. DOI: 10.1016/j.supflu.2010.12.006.
  • Adrian, T.; Wendland, M.; Hasse, H.; Maurer, G. High-Pressure Multiphase Behaviour of Ternary Systems Carbon Dioxide–Water–Polar Solvent: Review and Modeling with the Peng–Robinson Equation of State. J. Supercrit. Fluids 1998, 12, 185–221. DOI: 10.1016/S0896-8446(98)00087-4.
  • Muñoz-Rujas, N.; Aguilar, F.; García-Alonso, J. M.; Montero, E. A. Thermodynamics of Binary Mixtures 1-Ethoxy-1,1,2,2,3,3,4,4,4-Nonafluorobutane (HFE-7200) + 2-Propanol: High Pressure Density, Speed of Sound and Derivative Properties. J. Chem. Thermodyn. 2019, 131, 630–647. DOI: 10.1016/j.jct.2018.12.018.
  • Möller, D.; Fischer, J. Determination of an Effective Intermolecular Potential for Carbon Dioxide Using Vapour-Liquid Phase Equilibria from NpT + Test Particle Simulations. Fluid Phase Equilib. 1994, 100, 35–61. DOI: 10.1016/0378-3812(94)80002-2.
  • Nourozieh, H.; Kariznovi, M.; Abedi, J. Experimental and Modeling Investigations of Solubility and Saturated Liquid Densities and Viscosities for Binary Systems (Methane+, Ethane+, and Carbon Dioxide + 2-Propanol). J. Chem. Thermodyn. 2013, 65, 191–197. DOI: 10.1016/j.jct.2013.05.040.
  • Moore, J. W.; Flanner, H. H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 1996, 20, 64–74.
  • Noce, L.; Gwaza, L.; Mangas-Sanjuan, V.; Garcia-Arieta, A. Comparison of Free Software Platforms for the Calculation of the 90% Confidence Interval of f2 Similarity Factor by Bootstrap Analysis. Eur. J. Pharm. Sci. 2020, 146, 105259. DOI: 10.1016/j.ejps.2020.105259.
  • Klein, E. J.; Carvalho, P. I. N.; Náthia-Neves, G.; Vardanega, R.; Meireles, M. A. A.; da Silva, E. A.; Vieira, M. G. A. Techno-Economical Optimization of Uvaia (Eugenia Pyriformis) Extraction Using Supercritical Fluid Technology. J. Supercrit. Fluids 2021, 174, 105239. DOI: 10.1016/j.supflu.2021.105239.
  • Confortin, T. C.; Todero, I.; Luft, L.; Ugalde, G. A.; Mazutti, M. A.; Oliveira, Z. B.; Bottega, E. L.; Knies, A. E.; Zabot, G. L.; Tres, M. V. Oil Yields, Protein Contents, and Cost of Manufacturing of Oil Obtained from Different Hybrids and Sowing Dates of Canola. J. Environ. Chem. Eng. 2019, 7, 102972. DOI: 10.1016/j.jece.2019.102972.
  • Reynolds, W. C. Thermodynamic Properties in SI: Graphs, Tables, and Computational Equations for Forty Substances, Department of Mechanical Engineering, Stanford University Stanford, CA, 1979.
  • Ziegler, J. W.; Chester, T. L.; Innis, D. P.; Page, S. H.; Dorsey, J. G. Supercritical Fluid Flow Injection Method for Mapping Liquid—Vapor Critical Loci of Binary Mixtures Containing CO2. American Chemical Society, 1995, 608, 6–93. DOI: 10.1021/bk-1995-0608.ch006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.