Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 5
62
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergy of phosphate and hyperthermophilic bio-drying reduces pollution of sludge bio-drying: Reducing ammonia emissions and heavy metal migration risk

ORCID Icon, , , , & ORCID Icon
Pages 936-951 | Received 09 Dec 2023, Accepted 27 Feb 2024, Published online: 14 Mar 2024

References

  • Felicio dos Reis, R.; Sergio Cordeiro, J.; Font, X.; Laguna Achon, C. The Biodrying Process of Sewage Sludge – a Review. Dry. Technol. 2020, 38, 1247–1260. DOI: 10.1080/07373937.2019.1629689.
  • Rao, B.; Wang, G.; Xu, P. Recent Advances in Sludge Dewatering and Drying Technology. Dry. Technol. 2022, 40, 3049–3063. DOI: 10.1080/07373937.2022.2043355.
  • Li, Y.; Dong, L.; Li, Y.; Zheng, X.; Zhang, C.; Ding, N. Enhancement of Biological Fermented Sludge Dewaterability by Inoculation of Filamentous Fungi Mucor circinelloides XY-Z and Penicillium oxalicum LY-1. Dry. Technol. 2019, 37, 1678–1687. DOI: 10.1080/07373937.2018.1531882.
  • Quan, H.; Zhu, T.; Ma, F.; Zhang, K.; Zhu, Y.; Wang, Y.; Lyu, Z. Enhanced Bio-Drying Effect in Low-Temperature: Characteristics of Sludge Hyperthermophilic Aerobic Bio-Drying by Inoculating with Thermophilic Bacteria and Full-Scale Operation. Dry. Technol. 2023, 41, 1977–1990. DOI: 10.1080/07373937.2023.2210213.
  • Tunçal, T. Evaluating Drying Potential of Different Sludge Types: Effect of Sludge Organic Content and Commonly Used Chemical Additives. Dry. Technol. 2010, 28, 1344–1349. DOI: 10.1080/07373937.2010.482704.
  • Wang, D.; Liu, X.; Zeng, G.; Zhao, J.; Liu, Y.; Wang, Q.; Chen, F.; Li, X.; Yang, Q. Understanding the Impact of Cationic Polyacrylamide on Anaerobic Digestion of Waste Activated Sludge. Water Res. 2018, 130, 281–290. DOI: 10.1016/j.watres.2017.12.007.
  • Zhang, Z.; Guo, L.; Wang, Y.; Li, F.; Zhao, Y.; Gao, M.; She, Z. Degradation and Transformation of Extracellular Polymeric Substances (EPS) and Dissolved Organic Matters (DOM) during Two-Stage Anaerobic Digestion with Waste Sludge. Int. J. Hydrogen Energy 2017, 42, 9619–9629. DOI: 10.1016/j.ijhydene.2017.02.201.
  • Liu, A.; Ahn, I.-S.; Mansfield, C.; Lion, L. W.; Shuler, M. L.; Ghiorse, W. C. Phenanthrene Desorption from Soil in the Presence of Bacterial Extracellular Polymer: Observations and Model Predictions of Dynamic Beheavior. Water Res. 2001, 35, 835–843. DOI: 10.1016/S0043-1354(00)00324-9.
  • Antonkiewicz, J.; Pełka, R. Fractions of Heavy Metals in Soil after the Application of Municipal Sewage Sludge, Peat, and Furnace Ash. Soil Sci. Annu. 2014, 65, 118–125. DOI: 10.1515/ssa-2015-0003.
  • Cui, H.; Ou, Y.; Wang, L-x.; Yan, B-x.; Li, Y-x.; Ding, D-w Phosphate Rock Reduces the Bioavailability of Heavy Metals by Influencing the Bacterial Communities during Aerobic Composting. J. Integr. Agric. 2021, 20, 1137–1146. DOI: 10.1016/S2095-3119(20)63300-7.
  • Zongqi, S.; Nanwen, Z.; Haiping, Y.; Xiaohu, D.; Yanwen, S. Buffering Phosphate Mitigates Ammonia Emission in Sewage Sludge Composting: Enhanced Organics Removal Coupled with Microbial Ammonium Assimilation. J. Clean. Prod. 2019, 227, 189–198. DOI: 10.1016/j.jclepro.2019.04.197.
  • Dai, Q.; Ma, L.; Ren, N.; Ning, P.; Guo, Z.; Xie, L. Research on the Variations of Organics and Heavy Metals in Municipal Sludge with Additive Acetic Acid and Modified Phosphogypsum. Water Res. 2019, 155, 42–55. DOI: 10.1016/j.watres.2019.02.015.
  • Chan, M. T.; Selvam, A.; Wong, J. W. C. Reducing Nitrogen Loss and Salinity of ‘Struvite’ Food Waste Composting by Zeolite Amendment. Bioresour. Technol. 2016, 200, 838–844. DOI: 10.1016/j.biortech.2015.10.093.
  • Ye, F.; Peng, G.; Li, Y. Influences of Effluent Carbon Source on Extracellular Polymeric Substances (EPS) and Physicochemical Properties of Activated Sludge. Chemosphere 2011, 84, 1250–1255. DOI: 10.1016/j.chemosphere.2011.05.004.
  • Yu, Z.; Tang, J.; Liao, H.; Liu, X.; Zhou, P.; Chen, Z.; Rensing, C.; Zhou, S. The Distinctive Microbial Community Improves Composting Efficiency in a Full-Scale Hyperthermophilic Composting Plant. Bioresour. Technol. 2018, 265, 146–154. DOI: 10.1016/j.biortech.2018.06.011.
  • Zhang, D. Q.; He, P. J.; Jin, T. F.; Shao, L. M. Bio-Drying Municipal Solid Waste with High Water Content by Regulating and Inoculating Aeration Procedures. Bioresour. Technol. 2008, 99, 8796–8802. DOI: 10.1016/j.biortech.2008.04.046.
  • Liu, Z. G.; Tan, X. J.; Wang, Y. X.; Zou, W. G.; Zhang, C. Effect of Temperature and Bulking Agents on Deep Bio-Drying of High-Solid Anaerobically Digested Sludge. Dry. Technol. 2020, 38, 1904–1914. DOI: 10.1080/07373937.2019.1678043.
  • Jiang, J. S.; Liu, X. L.; Huang, Y. M.; Huang, H. Inoculation with Nitrogen Turnover Bacterial Agent Appropriately Increasing Nitrogen and Promoting Maturity in Pig Manure Composting. Waste Manag. 2015, 39, 78–85. DOI: 10.1016/j.wasman.2015.02.025.
  • Koyama, M.; Nagao, N.; Syukri, F.; Rahim, A. A.; Kamarudin, M. S.; Toda, T.; Mitsuhashi, T.; Nakasaki, K. Effect of Temperature on Thermophilic Composting of Aquaculture Sludge: NH3 Recovery, Nitrogen Mass Balance, and Microbial Community Dynamics. Bioresour. Technol. 2018, 265, 207–213. DOI: 10.1016/j.biortech.2018.05.109.
  • Zhao, Y.; Li, W.; Chen, L.; Meng, L.; Zheng, Z. Effect of Enriched Thermotolerant Nitrifying Bacteria Inoculation on Reducing Nitrogen Loss during Sewage Sludge Composting. Bioresour. Technol. 2020, 311, 123461. DOI: 10.1016/j.biortech.2020.123461.
  • Yuan, J.; Chadwick, D.; Zhang, D.; Li, G.; Chen, S.; Luo, W.; Du, L.; He, S.; Peng, S. Effects of Aeration Rate on Maturity and Gaseous Emissions during Sewage Sludge Composting. Waste Manag. 2016, 56, 403–410. DOI: 10.1016/j.wasman.2016.07.017.
  • Pan, J.; Cai, H.; Zhang, Z.; Liu, H.; Li, R.; Mao, H.; Awasthi, M. K.; Wang, Q.; Zhai, L. Comparative Evaluation of the Use of Acidic Additives on Sewage Sludge Composting Quality Improvement, Nitrogen Conservation, and Greenhouse Gas Reduction. Bioresour. Technol. 2018, 270, 467–475. DOI: 10.1016/j.biortech.2018.09.050.
  • Rajagopal, R.; Massé, D. I.; Singh, G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresour. Technol. 2013, 143, 632–641. DOI: 10.1016/j.biortech.2013.06.030.
  • Koyama, M.; Nagao, N.; Syukri, F.; Abd Rahim, A.; Toda, T.; Tran, Q. N. M.; Nakasaki, K. Ammonia Recovery and Microbial Community Succession during Thermophilic Composting of Shrimp Pond Sludge at Different Sludge Properties. J. Clean. Prod. 2020, 251, 119718. DOI: 10.1016/j.jclepro.2019.119718.
  • Liu, X.; Hou, Y.; Li, Z.; Yu, Z.; Tang, J.; Wang, Y.; Zhou, S. Hyperthermophilic Composting of Sewage Sludge Accelerates Humic Acid Formation: Elemental and Spectroscopic Evidence. Waste Manag. 2020, 103, 342–351. DOI: 10.1016/j.wasman.2019.12.053.
  • Cui, P.; Liao, H.; Bai, Y.; Li, X.; Zhao, Q.; Chen, Z.; Yu, Z.; Yi, Z.; Zhou, S. Hyperthermophilic Composting Reduces Nitrogen Loss via Inhibiting Ammonifiers and Enhancing Nitrogenous Humic Substance Formation. Sci. Total Environ. 2019, 692, 98–106. DOI: 10.1016/j.scitotenv.2019.07.239.
  • Hantula, J.; Bamford, D. H. Bacteriophage Resistance and Flocculation Deficiency of Flavobacterium sp. are Phenotypically Interrelated. Appl. Microbiol. Biotechnol. 1991, 36, 105–108. DOI: 10.1007/BF00164708.
  • More, T. T.; Yadav, J. S. S.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Extracellular Polymeric Substances of Bacteria and Their Potential Environmental Applications. J. Environ. Manage. 2014, 144, 1–25. DOI: 10.1016/j.jenvman.2014.05.010.
  • Bayer, A. S.; Eftekhar, F.; Tu, J.; Nast, C. C.; Speert, D. P. Oxygen-Dependent Upregulation of Mucoid Exopolysaccharide (Alginate) Production in Pseudomonas aeruginosa. Infect. Immun. 1990, 58, 1344–1349. DOI: 10.1128/iai.58.5.1344-1349.1990.
  • Nielsen, P. H.; Frølund, B.; Keiding, K. Changes in the Composition of Extracellular Polymeric Substances in Activated Sludge during Anaerobic Storage. Appl. Microbiol. Biotechnol. 1996, 44, 823–830. DOI: 10.1007/BF00178625.
  • Gandhi, H. P.; Ray, R. M.; Patel, R. M. Exopolymer Production by Bacillus Species. Carbohydr. Polym. 1997, 34, 323–327. DOI: 10.1016/S0144-8617(97)00132-X.
  • Kara, F.; Gurakan, G. C.; Sanin, F. D. Monovalent Cations and Their Influence on Activated Sludge Floc Chemistry, Structure, and Physical Characteristics. Biotechnol. Bioeng. 2008, 100, 231–239. DOI: 10.1002/bit.21755.
  • Parsons, D. F.; Boström, M.; Nostro, P. L.; Ninham, B. W. Hofmeister Effects: Interplay of Hydration, Nonelectrostatic Potentials, and Ion Size. Phys. Chem. Chem. Phys. 2011, 13, 12352–12367. DOI: 10.1039/C1CP20538B.
  • Mayes, H. B.; Tian, J.; Nolte, M. W.; Shanks, B. H.; Beckham, G. T.; Gnanakaran, S.; Broadbelt, L. J. Sodium Ion Interactions with Aqueous Glucose: Insights from Quantum Mechanics, Molecular Dynamics, and Experiment. J. Phys. Chem. B 2014, 118, 1990–2000. DOI: 10.1021/jp409481f.
  • Roesser, M.; Müller, V. Osmoadaptation in Bacteria and Archaea: Common Principles and Differences. Environ. Microbiol. 2001, 3, 743–754. DOI: 10.1046/j.1462-2920.2001.00252.x.
  • Li, J. M.; Wu, J. G.; Shao, C.; Ren, J. Effect of Different Organic Materials on the Structure of Humus in Black Soil Revealed by Thermal (TG–DTA) Analyses. J. Biobased Mater. Bioenergy 2013, 7, 504–508. DOI: 10.1166/jbmb.2013.1286.
  • Ma, F.; Zhu, T.; Yao, S.; Quan, H.; Zhang, K.; Liang, B.; Wang, Y.; Zhu, Y.; Zhao, C.; Lyu, Z. Coupling Effect of High Temperature and Thermophilic Bacteria Indirectly Accelerates the Humification Process of Municipal Sludge in Hyperthermophilic Composting. Process Saf. Environ. Prot. 2022, 166, 469–477. DOI: 10.1016/j.psep.2022.08.052.
  • Ha, J.; Gélabert, A.; Spormann, A. M.; Brown, G. E. Role of Extracellular Polymeric Substances in Metal Ion Complexation on Shewanella oneidensis: Batch Uptake, Thermodynamic Modeling, ATR-FTIR, and EXAFS Study. Geochim. Cosmochim. Acta 2010, 74, 1–15. DOI: 10.1016/j.gca.2009.06.031.
  • Páez-Espino, D.; Tamames, J.; de Lorenzo, V.; Cánovas, D. Microbial Responses to Environmental Arsenic. Biometals 2009, 22, 117–130. DOI: 10.1007/s10534-008-9195-y.
  • Meng, L.; Cheng, X.; Guo, H. Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. DOI: 10.1016/j.ibiod.2012.06.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.