247
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Dissecting dietary alkylresorcinols: a compile of their distribution, biosynthesis, extraction and functional properties

&
Pages 581-617 | Received 24 Aug 2022, Accepted 06 Feb 2023, Published online: 08 May 2023

References

  • Sampietro DA, Belizán MME, Apud GR, et al. Alkylresorcinols: chemical properties, methods of analysis and potential uses in food, industry and plant protection. In Céspedes CL, Sampietro DA, Seigler DS, editors. Natural antioxidants and biocides from wild medicinal plants. Wallingford (UK): CAB International; 2013. p. 148–166.
  • Kozubek A, Tyman JHP. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev. 1999;99:1–26.
  • Togue TAM, Ndontsa BL, Bitchagno GTM, et al. New alkenylresorcinols with cytotoxic and antimicrobial activities from the leaves of Embelia schimperi. Planta Med. 2020;86:1298–1303.
  • Li ZH, Yang HY, Zhu WT, et al. Myrothecol A, a new alkylresorcinol with cytotoxicity from Myrothecium sp. Nat Prod Res. 2020;0:1–6.
  • Baerson SR, Schröder J, Cook D, et al. Alkylresorcinol biosynthesis in plants new insights from an ancient enzyme family? Plant Signal Behav. 2010;5:1286–1289.
  • Ross AB, Kamal-Eldin A, Aman P. Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr Rev. 2004;62:81–95.
  • Kozubek AT. Bioactive phenolic lipids. In: Rahman A, editor. Studies in natural products chemistry. Amsterdam: Elsevier BV; 2005. p. 119–90.
  • Zabolotneva AA, Shatova OP, Sadova AA, et al. An overview of alkylresorcinols biological properties and effects. J Nutr Metab. 2022;2022:4667607.
  • Vázquez L, Corzo-Martínez M, Arranz-Martínez P, et al. Bioactive lipids. In: Mérillon JM, Ramawat K, editors. Bioactive molecules in food. Reference series in phytochemistry. Cham: Springer; 2019. p. 467–527.
  • Liu J, Hao Y, Wang Z, et al. Identification, quantification, and anti-inflammatory activity of 5-nalkylresorcinols from 21 different wheat varieties. J Agric Food Chem. 2018;66:9241–9247.
  • Mattila P, Pihlava JM, Hellström J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem. 2005;53:8290–8295.
  • Jansson E, Landberg R, Kamal-Eldin A, et al. Presence of alkylresorcinols, potential whole grain biomarkers, in human adipose tissue. Br J Nutr. 2010;104:633–636.
  • Landberg R, Linko AM, Kamal-Eldin A, et al. Human plasma kinetics and relative bioavailability of alkylresorcinols after intake of rye bran. J Nutr. 2006;136:2760–2765.
  • Parikka K. Antioxidative long chain alkylresorcinols synthesis and deuterium labelling of bioactive compounds present in whole grains [doctoral thesis]. Finland: University of Helsinki; 2007.
  • Tian S, Sun Y, Chen Z, et al. Bioavailability and bioactivity of alkylresorcinols from different cereal products. J Food Qual. 2020;2020:1–6.
  • Pedrazzani C, Vanara F, Bhandari R, et al. 5-n-alkylresorcinol profiles in different cultivars of einkorn, emmer, spelt, common wheat, and tritordeum. J Agric Food Chem. 2021;69:14092–14102.
  • Magnucka EG, Pietr SJ. Role of alkylresorcinols in colonization of wheat by Pseudomonas Sp. strain 150. Electron J Pol Agric Univ. 2018;21:13.
  • Tyman JHP. The chemistry of non-isoprenoid phenolic lipids. Stud Nat Prod Chem. 1991;9:313.
  • Kozubek A, Pietr S, Czerwonka A. Alkylresorcinols are abundant lipid components in different strains of Azotobacter chroococcum and Pseudomonas spp. J Bacteriol. 1996;178:4027–4030.
  • Ross AB, Shepherd MJ, Schüpphaus M, et al. Alkylresorcinols in cereals and cereal products. J Agric Food Chem. 2003;51:4111–4118.
  • Wang J, Gao X, Wang Z. Non-destructive determination of alkylresorcinol (ARs) content on wheat seed surfaces and prediction of ARs content in whole-grain flour. Molecules. 2019;24:1323–1329.
  • Kyrø C, Biskup I, Brunius C, et al. Alkylresorcinols (biomarkers of whole grain intake), cereal fibre intake and metabolic profile – results from a European study. Proc Nutr Soc. 2020;79:2020.
  • Landberg R, Kamal-Eldin A, Salmenkallio-Marttila M, et al. Localization of alkylresorcinols in wheat, rye and barley kernels. J Cereal Sci. 2008;48:401–406.
  • Landberg R, Marklund M, Kamal-Eldin A, et al. An update on alkylresorcinols occurrence, bioavailability, bioactivity and utility as biomarkers. J Funct Foods. 2014;7:77–89.
  • Andersson AAM, Åman P, Wandel M, et al. Alkylresorcinols in wheat and rye flour and bread. J Food Compos Anal. 2010;23:794–801.
  • Deszcz L, Kozubek A. Higher cardol homologs (5-alkylresorcinols) in rye seedlings. Biochim Biophys Acta Mol Cell Biol Lipids. 2000;1483:241–250.
  • Tsirivakou A, Melliou E, Magiatis P. A method for the rapid measurement of alkylresorcinols in flour, bread and related products based on 1H qNMR. Foods. 2020;9:1025.
  • Ross AB, Kochhar S. Rapid and sensitive analysis of alkylresorcinols from cereal grains and products using HPLC – Coularray-based electrochemical detection. J Agric Food Chem. 2009;57:5187–5193.
  • Landberg R, Andersson AAM, Åman P, et al. Comparison of GC and colorimetry for the determination of alkylresorcinol homologues in cereal grains and products. Food Chem. 2009;113:1363–1369.
  • Dey ES, Mikhailopulo K. A food grade approach for the isolation of major alkylresorcinols (ARs) from rye bran applying tailored supercritical carbon dioxide (scCO2) extraction combined with HPLC. J Supercrit Fluids. 2009;51:167–173.
  • Knödler M, Kaiser A, Carle R, et al. Profiling of Alk(en)ylresorcinols in cereals by HPLC-DAD-APcI-MS n. Anal Bioanal Chem. 2008;391:221–228.
  • Zhu Y, Conklin DR, Chen H, et al. 5-Alk(en)ylresorcinols as the major active components in wheat bran inhibit human colon cancer cell growth. Bioorg Med Chem. 2011;19:3973–3982.
  • Sánchez LA, Olmedo D, López-Pérez JL, et al. Two new alkylresorcinols from Homalomena wendlandii and their cytotoxic activity. Nat Prod Commun. 2012;7:1043–1046.
  • Melliou E, Magiatis P, Skaltsounis AL. Alkylresorcinol derivatives and sesquiterpene lactones from Cichorium spinosum. J Agric Food Chem. 2003;51:1289–1292.
  • Yamashita Y, Matsunami K, Otsuka H, et al. Grevillosides A–F: glucosides of 5-alkylresorcinol derivatives from leaves of Grevillea robusta. Phytochemistry. 2008;69:2749–2752.
  • Kong C, Xu X, Hu F, et al. Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Chin Sci Bull. 2002;47:839–843.
  • Zarnowski R, Kozubek A. Resorcinolic lipids as natural biofungicides. In: Dehne HW, Gisi U, Kuck KH, et al., editors. Modern fungicides and antifungal compounds III. Bonn: AgroConcept GmbH, Th. Mann Verlag; 2002. p. 337–347.
  • Foundikou H, Mbiantcha M, Bankeu Kezetas JJ, et al. Two new alkylresorcinol derivatives from the leaves of Scyphocephalium ochocoa. Z Fur Naturforsch B J Chem Sci. 2018;73:381–388.
  • Chaturvedula VSP, Schilling JK, Miller JS, et al. New cytotoxic bis 5-alkylresorcinol derivatives from the leaves of Oncostemon bojerianum from the Madagascar rainforest. J Nat Prod. 2002;65:1627–1632.
  • Wang H, Leach DN, Forster PI, et al. Prenylated bisresorcinols from Grevillea floribunda. Phytochem Lett. 2009;2:41–45.
  • Blanksby SJ, Wang H, Leach DN, et al. Prenylated alkylbisphenols from Grevillea whiteana. Nat Prod Commun. 2009;4:951–958.
  • Wang H, Leach D, Thomas MC, et al. Bisresorcinols and arbutin derivatives from Grevillea banksii R. Br. Nat Prod Commun. 2008;3:57–64.
  • Miyanaga A, Horinouchi S. Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases. J Antibiot. 2009;62:371–376.
  • Gadea A, Khazem M, Gaslonde T. Current knowledge on chemistry of Proteaceae family, and biological activities of their bis-5-alkylresorcinol derivatives. Phytochem Rev. 2022;21:1969–2005.
  • (a) Agatonovic-Kustrin S, Kustrin E, Gegechkori V, et al. High-performance thin-layer chromatography hyphenated with microchemical and biochemical derivatizations in bioactivity profiling of marine species. Mar Drugs. 2019;17:1–14. (b) Ortega MJ, Pantoja JJ, De Los Reyes C, et al. 5-Alkylresorcinol derivatives from the bryozoan Schizomavella mamillata: isolation, synthesis, and antioxidant activity. Mar Drugs. 2017;15:344.
  • Eisenbarth S, Gehling M, Harder A, et al. Pentaporins A, B and C: disulfides from the marine bryozoan Pentapora fascialis. Tetrahedron. 2002;58:8461–8464.
  • Tsuge N, Mizokami M, Imai S, et al. Adipostatins A and B, new inhibitors of glycerol-3-phosphate dehydrogenase. J Antibiot. 1992;45:886–891.
  • Cocotl-Yañez M, Sampieri A, III, Moreno S, et al. Roles of RpoS and PsrA in cyst formation and alkylresorcinol synthesis in Azotobacter vinelandii. Microbiology. 2011;157:1685–1693.
  • Bitkov VV, Nenashev VA, Pridachina NN, et al. Membrane-structuring properties of bacterial long-chain alkyl resorcinols. Biochim Biophys Acta. 1992;1108:224–232.
  • Funa N, Ozawa H, Hirata A, et al. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc Natl Acad Sci U S A. 2006;103:6356–6361.
  • Kaneko A, Morishita Y, Tsukada K, et al. Post-genomic approach based discovery of alkylresorcinols from a cricket-associated fungus, Penicillium soppi. Org Biomol Chem. 2019;17:5239–5243.
  • Reusch RN, Sadoff HL. Novel lipid components of the Azotobacter vinelandii cyst membrane. Nature. 1983;302:268–270.
  • Rateb ME, Yang D, Vodanovic-Jankovic S, et al. Adipostatins A–D from Streptomyces sp. 4875 inhibiting Brugia malayi asparaginyl-tRNA synthetase and killing adult Brugia malayi parasites. J Antibiot. 2015;68:540–542.
  • Lasch C, Gummerlich N, Myronovskyi M, et al. Loseolamycins: a group of new bioactive alkylresorcinols produced after heterologous expression of a type III PKS from Micromonospora endolithica. Molecules. 2020;25:4594.
  • Rejman J, Kozubek A. The effect of alkylresorcinol on lipid metabolism in Azotobacter chroococcum. Z Naturforsch C J Biosci. 2004;59:393–398.
  • Batrakov SG, Pridachina NN, Kruglyak ED, et al. NED. Phenolic lipid from Azotobacter chroococcum. Chem Nat Compd. 1977;13:413–417.
  • Su CJ, Reusch RN, Sadoff HL. Isolation and characterization of several unique lipids from Azotobacter vinelandii cysts. J Bacteriol. 1981;147:80–90.
  • Reusch RN, Sadoff HL. Lipid metabolism during encystment of Azotobacter vinelandii. J Bacteriol. 1981;145:889–895.
  • Vickery ML, Vickery B. Plant secondary metabolism. London (UK): Macmillan Press; 1981.
  • Fate GD, Lynn DG. Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc. 1996;118:11369–11376.
  • Suzuki Y, Kurano M, Esumi Y, et al. Biosynthesis of 5-alkylresorcinol in rice: incorporation of a putative fatty acid unit in the 5-alkylresorcinol carbon chain. Bioorg Chem. 2003;31:437–452.
  • Dayan FE, Kagan IA, Rimando AM. Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. J Biol Chem. 2003;278:28607–28611.
  • Cook D, Rimando AM, Clemente TE, et al. Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell. 2010;22:867–887.
  • Romero Y, Moreno S, Guzmán J, et al. Sigma factor RpoS controls alkylresorcinol synthesis through ArpR, a LysR-type regulatory protein, during encystment of Azotobacter vinelandii. J Bacteriol. 2013;195:1834–1844.
  • López-Pliego L, García-Ramírez L, Cruz-Gómez EA, et al. Transcriptional study of the RsmZ-sRNAs and their relationship to the biosynthesis of alginate and alkylresorcinols in Azotobacter vinelandii. Mol Biotechnol. 2018;60:670–680.
  • Segura D, Vite O, Romero Y, et al. Isolation and characterization of Azotobacter vinehndii mutants impaired in alkylresorcinol synthesis: alkylresorcinols are not essential for cyst desiccation resistance. J Bacteriol. 2009;191:3142–3148.
  • Davydova OK, Deriabin DG, Nikiian AN, et al. Mechanisms of interaction between DNA and chemical analogues of microbial anabiosis autoinducers. Mikrobiologiia. 2005;74:616–625.
  • Álvarez-Álvarez R, Martínez-Burgo Y, Rodríguez-García A, et al. Discovering the potential of S. clavuligerus for bioactive compound production: crosstalk between the chromosome and the pSCL4 megaplasmid. BMC Genomics. 2017;18:1–13.
  • González-Quiñónez N, Gutiérrez-del-Río I, García-Cancela P, et al. The modulation of SCO2730/31 copper chaperone/transporter orthologue expression enhances secondary metabolism in streptomycetes. IJMS. 2021;22:10143.
  • Ross AB, Chen Y, Frank J, et al. Cereal alkylresorcinols elevate γ-tocopherol levels in rats and inhibit γ-tocopherol metabolism in vitro. J Nutr. 2004;134:506–510.
  • Zou Y, Fan F, Fang Y, et al. Neuroprotective effect of alkylresorcinols from wheat bran in HT22 cells: correlation with in vitro antioxidant activity. EFood. 2021;2:13–20.
  • Elder AS, Coupland JN, Hopfer H, et al. Effect of alkyl chain length on the antioxidant activity of alkylresorcinol homologs in low-moisture crackers. Food Chem. 2021;164:128885.
  • Laguerre M, López Giraldo LJ, Lecomte J, et al. Chain length affects antioxidant properties of chlorogenate esters in emulsion: the cutoff theory behind the polar paradox. J Agric Food Chem. 2009;57:11335–11342.
  • Gasiorowski K, Brokos B, Kozubek A, et al. The antimutagenic activity of two plant-derived compounds. A comparative cytogenetic study. Cell Mol Biol Lett. 2000;5:171–190.
  • Iwatsuki K, Akihisa T, Tokuda H, et al. Sterol ferulates, sterols, and 5-alk(en)ylresorcinols from wheat, rye, and corn bran oils and their inhibitory effects on epstein-barr virus activation. J Agric Food Chem. 2003;51:6683–6688.
  • Wei-Guo T, Fu-Qin G, You-Yi Z, et al. Experimental study on antitumor effects of five alkylphenol from wheat bran and its preliminary mechanism. Sci Technol Food Ind. 2014;15:352–355.
  • Fu J, Soroka DN, Zhu Y, et al. Induction of apoptosis and cell-cycle arrest in human colon-cancer cells by whole-grain alkylresorcinols via activation of the p53 pathway. J Agric Food Chem. 2018;66:11935–11942.
  • Parikka K, Rowland IR, Welch RW, et al. In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J. Agric. Food Chem. 2006;54:1646–1650.
  • Rejman J, Kozubek A. Long-chain orcinol homologs from cereal bran are effective inhibitors of glycerophosphate dehydrogenase. Cell Mol Biol Lett. 1997;2:411–419.
  • Rejman J, Kozubek A. Inhibitory effect of natural phenolic lipids upon NAD-dependent dehydrogenases and on triglyceride accumulation in 3T3-L1 cells in culture. J Agric Food Chem. 2004;52:246–250.
  • Kraal JH, Hussain AA, Gregorio SB, et al. Exposure time and the effect of hexylresorcinols on bacterial aggregates. J Dent Res. 1979;58:2125–2131.
  • Aronoff DM, Boutaud O, Marnett LJ, et al. Inhibition of prostaglandin H2 synthases by salicylate is dependent on the oxidative state of the enzymes. J Pharmacol Exp Ther. 2003;304:589–595.
  • Imai S, Ohama M, Suzuki M, et al. Research article short alkyl chain-length resorcinol olivetol protects against obesity with mitochondrial activation by Pgc-1α deacetylation. SSRN Elec J. 2021. DOI: 10.2139/ssrn.3924601
  • Athukorala Y, Hosseinian FS, Mazza G. Extraction and fractionation of alkylresorcinols from triticale bran by two-step supercritical carbon dioxide. LWT Food Sci Technol. 2010;43:660–665.
  • Agil R, Oomah DB, Mazza G, et al. Optimization of alkylresorcinols extraction from triticale bran using response surface methodology. Food Bioproc Tech. 2012;5:2655–2664.
  • Cacace JE, Mazza G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J Food Sci. 2003;68:240–248.
  • Holt MD, Moreau RA, Dermarderosian A, et al. Accelerated solvent extraction of alkylresorcinols in food products containing uncooked and cooked wheat. J Agric Food Chem. 2012;60:4799–4802.
  • Gunenc A, Tavakoli H, Seetharaman K, et al. Stability and antioxidant activity of alkyresorcinols in breads enriched with hard and soft wheat brans. Food Res Int. 2013;51:571–578.
  • Gailane N, Jakobsone I, Bartkevičs V, et al. Application of Hplc-Pda method using two different extraction procedures for the determination of alkylresorcinols in cereals. Proc Latv Acad Sci B. 2015;69:182–189.
  • Ho CHL, Cacace JE, Mazza G. Extraction of lignans, proteins and carbohydrates from flaxseeds meal with pressurized low polarity water. LWT Food Sci Technol. 2007;4:1637–1647.
  • Francisco JDC, Danielsson B, Kozubek A, et al. Application of supercritical carbon dioxide for the extraction of alkylresorcinols from rye bran. J Supercrit Fluids. 2005;35:220–226.
  • Rebolleda S, Beltrán S, Sanz MT, et al. Extraction of alkylresorcinols from wheat bran with supercritical CO2. J Food Eng. 2013;119:814–821.
  • Landberg R, Dey ES, Francisco JDC, et al. Comparison of supercritical carbon dioxide and ethyl acetate extraction of alkylresorcinols from wheat and rye. J Food Compos Anal. 2007;20:534–538.
  • McKenzie LC, Thompson JE, Sullivan R. Green chemical processing in the teaching laboratory: a convenient liquid CO2 extraction of natural products. Geen Chem. 2004;6:355–358.
  • Gunenc A, HadiNezhad M, Farah I, et al. Impact of supercritical CO2 and traditional solvent extraction systems on the extractability of alkylresorcinols, phenolic profile and their antioxidant activity in wheat bran. J Funct Foods. 2015;12:109–119.
  • Ross AB, Åman P, Kamal-Eldin A. Identification of cereal alkylresorcinol metabolites in human urine - Potential biomarkers of wholegrain wheat and rye intake. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;809:125–130.
  • Ross AB, Åman P, Andersson R, et al. Chromatographic analysis of alkylresorcinols and their metabolites. J Chromatogr A. 2004;1054:157–164.
  • Mullin WJ, Wolynetz MS, JPE. A comparison of methods for the extraction and quantitation of Alk(en)ylresorcinols. J Food Comp Anal. 1992;223:216–223.
  • Kowalska I, Jędrejek D. Benzoxazinoid and alkylresorcinol content, and their antioxidant potential, in a grain of spring and winter wheat cultivated under different production systems. J Cereal Sci. 2020;95:103063.
  • Landberg R, Kamal-Eldin A, Andersson R, et al. Alkylresorcinol content and homologue composition in durum wheat (Triticum durum) kernels and pasta products. J Agric Food Chem. 2006;54:3012–3014.
  • Winata A, Lorenz K. Antioxidant potential of 5-n-pentadecylresorcinol. J Food Process Preserv. 1996;20:417–429.
  • CRC. Handbook of chemistry and physics. 74th ed. Raton (FL): CRC Press Boca; 1993.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.