518
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

State-of-the-art strategies and research advances for the biosynthesis of D-amino acids

, , , , , , , & show all
Pages 495-513 | Received 01 Sep 2022, Accepted 09 Feb 2023, Published online: 09 May 2023

References

  • Berkowitz BA, Bevins CL, Zasloff MA. Magainins: a new family of membrane-active host defense peptides. Biochem Pharmacol. 1990;39:625–629.
  • Reilly ME, Marway JS, Bonner AB, et al. Does nitric oxide have a role in regulating skeletal muscle protein synthesis. Clin Sci. 1997;92:10.
  • Du S, Wang Y, Weatherly CA, et al. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity. Anal Bioanal Chem. 2018;410:2971–2979.
  • Xu Y, Liu Z, Liu Z, et al. Identification of d-amino acids in tea leaves. Food Chem. 2020;317:126428.
  • Liu Y, Xu G, Han R, et al. Identification of D-carbamoylase for biocatalytic cascade synthesis of D-tryptophan featuring high enantioselectivity. Bioresource Technol. 2017;249:720–728.
  • Martínez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, et al. Natural occurrence and industrial applications of D-amino acids: an overview. Chem Biodivers. 2010;7:1531–1548.
  • Zhang DP, Jing XR, Zhang WL, et al. Highly selective synthesis of D-amino acids from readily available L-amino acids by a one-pot biocatalytic stereoinversion cascade. RSC Adv. 2019;9:29927–29935.
  • Gao X, Ma Q, Zhu H. Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl Microbiol Biotechnol. 2015;99:3341–3349.
  • Pollegioni L, Rosini E, Molla G. Advances in enzymatic synthesis of D-amino acids. Int J Mol Sci. 2020;21:3206.
  • Snyder HR, MacDonalda JA. Synthesis of tryptophan and tryptophan analogs. J Am Chem Soc. 1955;77:1257–1259.
  • Christina B, David R, Patrick A, Michaela S, Frances A, Improved synthesis of 4-Cyanotryptophan and other tryptophan analogues in aqueous solvent using variants of TrpB from Thermotoga maritima. J Org Chem. 2018;83:7447–7452.
  • Bommarius AS, Schwarm M, Drauz K. Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. Biochem Mol Bio. 1998;5:1–11.
  • Misono H, Togawa H, Yamamoto T, et al. Meso-alpha, epsilon-diaminopimelate D-dehydrogenase: distribution and the reaction product. J Bacteriol. 1979;137:22–27.
  • Wakayama M, Moriguchi M. Comparative biochemistry of bacterial N-acyl-D-amino acid amidohydrolase. J Mol Catal B-Enzym. 2001;12:15–25.
  • Schnepel C, Kemker I, Sewald N. One-plot synthesis of D-halotryptophans by dynamic stereoinversion using a specific L-amino acid oxidase. ACS Catal. 2018;9:1149–1158.
  • Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol. 2016;42:169–177.
  • Carvalho C. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv. 2011;29:75–83.
  • Gourinchas G, Busto E, Killinger M, et al. A synthetic biology approach for the transformation of L-α-amino acids to the corresponding enantiopure (R)- or (S)-α-hydroxy acids. Chem Commun. 2015;51:2828–2831.
  • Bastings J, Eijk H, Damink S, et al. D-amino acids in health and disease: a focus on cancer. Nutrients. 2019;11:2205.
  • Typas A, Banzhaf M, Gross CA, et al. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nar Rev Microbiol. 2012;10:123–136.
  • Salingcarnboriboon AR, Nilada A, Jesita L, et al. Application of D-amino acids as biofilm dispersing agent in dental unit waterlines. Int J Paediatr. Dent. 2018;4:1–7.
  • Kolukisaoglu N. D-amino acids in plants: sources, metabolism, and functions. Int J Mol Sci. 2020;21:5421.
  • Cloos PAC, Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J. 2000;345:473–480.
  • Nagata Y, Masui R, Akino T. The presence of free D-serine, D-alanine and D-proline in human plasma. Experientia. 1992;48:986–988.
  • Yoshimitsu K, Hiromi N. D-amino acids in the nervous and endocrine systems. Scientifica. 2016;2016:1–9.
  • Jumpei S, Masataka S. Distinctive roles of D-amino acids in the homochiral world: chirality of amino acids modulates mammalian physiology and pathology. Keijo J Med. 2018;68:1–16.
  • Errico F, Rossi S, Napolitano F, et al. D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J Neurosci. 2008;28:10404–10414.
  • Kobayashi J. D-amino acids and lactic acid bacteria. Microorganisms. 2019;7:690.
  • Matsumoto M, Kunisawa A, Hattori T, et al. Free D-amino acids produced by commensal bacteria in the colonic lumen. Sci Rep. 2018;8:17915.
  • Zhang DP, Jing XR, Wu LJ, et al. Highly selective synthesis of D-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb Cell Fact. 2021;20:11.
  • Mutaguchi Y, Kobayashi J, Oikawa T, et al. D-amino acids in fermentative foods. D-amino acids: physiology, metabolism, and application. Tokyo (Japan): Springer; 2016. p. 341–357.
  • Pugliese G, Solini A, Bonora E, et al. Chronic kidney disease in type 2 diabetes: lessons from the renal insufficiency and cardiovascular events (RIACE) Italian multicentre study. Nutr Metab Cardiovasc Dis. 2014;24:815–822.
  • Okada K, Gogami Y, Oikawa T. Principal component analysis of the relationship between the D-amino acid concentrations and the taste of the sake. Amino Acids. 2013;44:489–498.
  • Jiang S, Li C, Zhang W, et al. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli. Biochem J. 2007;402:429–437.
  • Chen M, Shi C, Zhao J, et al. Application and microbial preparation of D-valine. World J Microb Biot. 2016;32:171.
  • Ahmed ST, Parmeggiani F, Weise NJ, et al. Chemoenzymatic synthesis of optically pure L- and D-biarylalanines through biocatalytic asymmetric amination and palladium-catalyzed arylation. ACS Catal. 2016;5:5410–5413.
  • Tork SD, Nagy E, Cserepes L, et al. The production of L- and D-phenylalanines using engineered phenylalanine ammonia lyases from Petroselinum crispum. Sci Rep. 2019;9:20123.
  • Zhu L, Feng G, Fei G, et al. One-plot enzymatic synthesis of D-arylalanines using phenylalanine ammonia lyase and L-amino acid deaminase. Appl Biochem Biotech. 2018;187:75–89.
  • Parmeggiani F, Casamajo AR, Colombo D, et al. Biocatalytic retrosynthesis approaches to D- (2,4,5-trifluorophenyl) alanine, key precursor of the antidiabetic sitagliptin. Green Chem. 2019;21:4368–4379.
  • Ju Y, Tong S, Gao Y, et al. Crystal structure of a membrane-bound L-amino acid deaminase from Proteus vulgaris. J Struct Biol. 2016;195:306–315.
  • Nakano S, Minamino Y, Hasebe F, et al. Deracemization and stereoinversion to aromatic D-amino acid derivatives with ancestral L-amino acid oxidase. ACS Catal. 2019;11:10152–10158.
  • Rosini E, Melis R, Molla G, et al. Deracemization and stereoinversion of α-amino acids by L-amino acid deaminase. Adv Synth Catal. 2017;359:3773–3781.
  • Barros J, Dixon RA. Plant phenylalanine/tyrosine ammonia-lyases. Trends Plant Sci. 2020;25:66–79.
  • Parmeggiani F, Lovelock SL, Weise NJ, et al. Synthesis of D- and L-phenylalanine derivatives by Phenylalanine ammonia lyases: a multi-enzymatic cascade process. Angew Chem Int Ed Engl. 2015;54:4608–4611.
  • Heberling MM, Wu B, Bartsch S, et al. Priming ammonia lyases and aminomutases for industrial and therapeutic applications. Curr Opin Chem Biol. 2013;17:250–260.
  • Vedha-Peters K, Gunawardan M, Rozzell JD, et al. Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J Am Chem Soc. 2006;128:10923–10929.
  • Parmeggiani F, Ahmed ST, Thompson MP, et al. Single-biocatalyst synthesis of enantiopure D-arylalanines exploiting an engineered D-amino acid dehydrogenase. Adv Synth Catal. 2016;358:3298–3306.
  • Chen X, Cui Y, Cheng X, et al. Highly atom economic synthesis of D-2-aminobutyric acid through an in vitro tri-enzymatic catalytic system. Chem Open. 2017;6:534–540.
  • Akita H, Seto T, Ohshima T, et al. Structural insight into the thermostable NADP+-dependent meso-diaminopimelate dehydrogenase from Ureibacillus thermosphaericus. Acta Crystallogr. B. 2015;71:1136–1147.
  • Nakajima N, Tanizawa K, Tanaka H, et al. Enantioselective synthesis of various D-amino acids by a multi-enzyme system. J Biotechnol. 1988;8:243–248.
  • Bae HS, Lee SG, Hong SP, et al. Production of aromatic D-amino acids from α-keto acids and ammonia by coupling of four enzyme reactions. J Mol Catal B-Enzym. 1999;6:241–247.
  • Walton C, Parmeggiani F, Barber JE, et al. Engineered aminotransferase for the production of D-phenylalanine derivatives using biocatalytic cascades. Chem Cat Chem. 2018;10:470–474.
  • Parmeggiani F, Casamajo AR, Walton C, et al. One-plot Biocatalytic synthesis of substituted D-tryptophans from indoles enabled by an engineered aminotransferase. ACS Catal. 2019b;9:3482–3486.
  • Mattos M, Costa I, De Souza R, et al. Biocatalytic cascade reaction for the asymmetric synthesis of L- and D-homoalanine. Chem Cat Chem. 2019;11:407–411.
  • Han SW, Shi JS. One-plot preparation of D-amino acids through biocatalytic deracemization using alanine dehydrogenase and ω-transaminase. Catal Lett. 2018;148:3678–3684.
  • Gao X, Chen X, Liu W, et al. A Novel meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum: overexpression, characterization, and potential for D-amino acid synthesis. Appl Environ Microbiol. 2012;78:8595–8600.
  • Hanson RL, Johnston RM, Goldberg SL, et al. Enzymatic preparation of an R-amino acid intermediate for a γ-secretase inhibitor. Org Process Res Dev. 2013;17:693–700.
  • Li T, Cui XX, Cui YL, et al. Exploration of transaminase diversity for the oxidative conversion of natural amino acids into 2-Ketoacids and high-value chemicals. ACS Catal. 2020;10:7950–7957.
  • Mao S, Liu X, Gao X, et al. Design of an efficient whole-cell biocatalyst for the production of hydroxyarginine based on a multi-enzyme cascade. Bioresource Technol. 2020;318:124261.
  • Lee DC, Kim HS. Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase. Biotechnol Bioeng. 1998;60:729–738.
  • Park JH, Kim GJ, Kim HS. Production of D-amino acid using whole cells of recombinant Escherichia coli with separately and coexpressed D-hydantoinase and N-carbamoylase. Biotechnol Prog. 2000;16:564–570.
  • Pantaleone DP, Taylor PP, Dukes TD, et al. Biocatalytic preparation of D-amino acids. ACS Sym. Ser. 2001;776:165–175.
  • Zhou Y, Wu SK, Li Z. One-plot enantioselective synthesis of D-phenylglycines from racemic mandelic acids, styrenes, or biobased L-phenylalanine via cascade biocatalysis. Adv Synth Catal. 2017;359:4305–4316.
  • Zhu Z, Gao X, Song Z, et al. Development of engineered ferredoxin reductase systems for the efficient hydroxylation of steroidal substrates. ACS Sustain Chem Eng. 2020;8:16720–16730.
  • Liu Y, Li Q, Hu X, et al. Construction and co-expression of polycistronic plasmid encoding D-hydantoinase and D-carbamoylase for the production of D-amino acids. Enzyme Microb Tech. 2008;42:589–593.
  • Liu Y, Zhu L, Qi W, et al. Biocatalytic production of D-p-hydroxyphenylglycine by optimizing protein expression and cell wall engineering in Escherichia coli. Appl Microbiol Biot. 2019;103:8839–8851.
  • Turner RJ, Aikens J, Royer S, et al. D-amino acid tolerant hosts for D‐hydantoinase whole cell biocatalysts. Eng Life Sci. 2004;4:517–520.
  • İnal M, Yiğitoğlu M. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly (N-vinyl-2-pyrrolidone) matrix. Appl Biochem Biotechnol. 2012;168:266–278.
  • Lee KH, Choi IS, Kim YG, et al. Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresour Technol. 2011;102:8191–8198.
  • Ortega N, Perez-Mateos M, Pilar MC, et al. Neutrase immobilization on alginate-glutaraldehyde beads by covalent attachment. J Agric Food Chem. 2009;57:109–115.
  • Wang X, Liu J, Du G, et al. Efficient production of L-sorbose from D-sorbitol by whole cell immobilization of Gluconobacter oxydans WSH-003. Biochem. Eng. J. 2013;77:171–176.
  • Hu X, Lin B. Efficient production of D-HPG with an immobilized transgenic strain E. coli LY13-05. Biotechnol Biotec Eq. 2015;29:1003–1010.
  • Alloue WA, Destain J, Medjoub EI, et al. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques. Appl Biochem Biotech. 2008;150:51–63.
  • Lattner D, Flemming HC, Mayer C. 13C-NMR study of the interaction of bacterial alginate with bivalent cations. Int J Biol Macromol. 2003;33:81–88.
  • Lee SE, Lee HY, Jung KH. Production of chlorphenesin galactoside by whole cells of β-galactosidase-containing Escherichia. J Microbiol Biotechnol. 2013;23:826–832.
  • Taqieddin E, Amiji M. Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials. 2004;25:1937–1945.
  • Jin YY, Li YD, Wan S, et al. The whole-cell immobilization of D-hydantoinase-engineered Escherichia coli for D-CpHPG biosynthesis. Electron J Biotechn. 2016;21:43–48.
  • Nozaki H, Takenaka Y, Kira I, et al. D-amino acid production by E. coli co-expressed three genes encoding hydantoin racemase, D-hydantoinase and N-carbamoyl-D-amino acid amidohydrolase. J Mol Catal B-Enzym. 2005;32:213–218.
  • Altenbuchner J, Herzberg SM, Syldatk C. Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr Opin Biotechnol. 2001;12:559–563.
  • Cheon YH, Kim HS, Han KH, et al. Crystal structure of D-hydantoinase from Bacillus stearothermophilus: insight into the stereochemistry of enantioselectivity. Biochem. 2002;41:9410–9417.
  • Xu Z, Liu Y, Yang Y, et al. Crystal Structure of D-Hydantoinase from Burkholderia pickettii at a resolution of 2.7 Angstroms: insights into the molecular basis of enzyme thermostability. J. Bacteriol. 2003;185:4038–4049.
  • Abendroth J, Niefind K, Schomburg D. X-ray structure of a dihydropyrimidinase from Thermus sp. at 1.3 Å resolution. J Mol Biol. 2002;320:143–156.
  • Kishan K, Vohra RM, Ganesan K, et al. Molecular structure of D-hydantoinase from Bacillus sp. AR9: evidence for mercury inhibition. J Mol Biol. 2005;347:95–105.
  • Kim GJ, Kim HS. C-Terminal regions ofd-hydantoinases are nonessential for catalysis, but affect the oligomeric structure. Biochem Biophys Res Commun. 1998;243:96–100.
  • Han WW, Zhan DL, Luo Q, et al. The substrate specificity and the catalytic mechanism of N-carbamyl-D-amino acid amidohydrolase: a theoretical investigation. Chem Phys Lett. 2009;472:107–112.
  • Chiu WC, You JY, Liu JS, et al. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl-D-amino acid amidohydrolase and N-acylamino acid racemase. J Mol Biol. 2006;359:741–753.
  • Wang WC, Hsu WH, Chien FT, et al. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J Mol Biol. 2001;306:251–261.
  • Gao X, Ma Q, Chen M, et al. Insight into the highly conserved and differentiated cofactor-binding sites of meso-diaminopimelate dehydrogenase StDAPDH. J Chem Inf Model. 2019;59:2331–2338.
  • Liu W, Li Z, Huang CH, et al. Structural and mutational studies on the unusual substrate specificity of meso-Diaminopimelate dehydrogenase from Symbiobacterium thermophilum. ChemBioChem. 2014;15:217–222.
  • Cirilli M, Scapin G, Sutherland A, et al. The three-dimensional structure of the ternary complex of Corynebacterium glutamicum diaminopimelate dehydrogenase-NADPH-L-2-amino-6-methylene-pimelate. Protein Sci. 2000;9:2034–2037.
  • Gao X, Huang F, Feng J, et al. Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for D-phenylalanine synthesis. Appl Environ Microbiol. 2013;79:5078–5081.
  • Zhang Y, Ma Q, Dong M, et al. Essential role of amino acid position 71 in substrate preference by meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum IAM14863. Enzyme Microb Technol. 2018;111:57–62.
  • Sugio S. Crystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity. Biochem. 1995;34:9661–9669.
  • Sugio S, Kashima A, Kishimoto K, et al. Crystal structures of L201A mutant of D-amino acid aminotransferase at 2.0 Å resolution: implication of the structural role of Leu201 in transamination. Protein Eng. 1998;11:613–619.
  • Serpico A, Cesare SD, Marles-Wright J, et al. D-phenylglycine aminotransferase (D-PhgAT) - substrate scope and structural insights of a stereoinverting biocatalyst used in the preparation of aromatic amino acids. Catal Sci Technol. 2020;3:16–25.
  • Walton CJW, Chica RA. A high-throughput assay for screening L- or D-amino acid specific aminotransferase mutant libraries. Anal Biochem. 2013;441:190–198.
  • Tosa T, Mori N, Fuse N, et al. Studies on continuous enzyme reactions: part V. kinetics and industrial application of aminoacylase column for continuous optical resolution of acyl-D, L-amino acids Part VI. Enzymatic Properties of the DEAE-Sephadex-Aminoacylase Complex. Agric Biol Chem. 1969;33:1047–1059.
  • Liaw SH, Chen SJ, Ko TP, et al. Crystal Structure of D-aminoacylase from Alcaligenes faecalis DA1. J Biol Chem. 2003;278:4957–4962.
  • Wakayama M, Yoshimune K, Hirose Y, et al. Production of D-amino acids by N-acyl-D-amino acid amidohydrolase and its structure and function. J Mol Catal B Enzym. 2003;23:71–85.
  • Wakayama M, Yada H, Kanda SI, et al. Role of conserved histidine residues in D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6. Biosci Biotechnol Biochem. 2000;64:1–8.
  • Arima J, Shimone K, Miyatani K, et al. Crystal structure of D-stereospecific amidohydrolase from Streptomyces sp. 82F2-insight into the structural factors for substrate specificity. Febs J. 2016;283:337–349.
  • Arima J, Ito H, Hatanaka T, et al. Aminolytic reaction catalyzed by D-stereospecific amidohydrolases from Streptomyces spp. Biochimie. 2011;93:1460–1469.
  • Okazaki S, Suzuki A, Komeda H, et al. Crystal structure and functional characterization of a D-stereospecific amino acid amidase from Ochrobactrum anthropi SV3, a new member of the penicillin-recognizing proteins. J Mol Biol. 2007;368:79–91.
  • Asano Y, Kato Y, Yamada A, et al. Structural similarity of D-aminopeptidase to carboxypeptidase DD and β-lactamases. Biochemistry. 1992;31:2316–2328.
  • Okazaki S, Suzuki A, Mizushima T, et al. Structures of D-amino-acid amidase complexed with L-phenylalanine and with L-phenylalanine amide: insight into the D-stereospecificity of D-amino-acid amidase from Ochrobactrum anthropi SV3. Acta Crystallogr D Biol Crystallogr. 2008;64:331–334.
  • Nakai T, Hasegawa T, Yamashita E, et al. Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. Structure. 2000;8:729–737.
  • Akita H, Suzuki H, Doi K, et al. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase. Appl Microbiol Biot. 2014;98:1135–1143.
  • Liu YF, Xu GC, Zhou JY, et al. Structure-guided engineering of D-carbamoylase reveals a key loop at substrate entrance tunnel. ACS Catal. 2020;10:12393–12402.
  • Aganyants H, Weigel P, Hovhannisyan Y, et al. Rational engineering of the substrate specificity of a thermostable D-hydantoinase (dihydropyrimidinase). High Throughput. 2020;9:5.
  • Cheon YH, Park HS, Kim JH, et al. Manipulation of the active site loops of D-hydantoinase, a (β/α) 8-barrel protein, for modulation of the substrate specificity. Biochem. 2004;43:7413–7420.
  • Hayashi J, Seto T, Akita H, et al. Structure-based engineering of an artificially generated NADP+-dependent D-amino acid dehydrogenase. Appl Environ Microb. 2017;83:491–517.
  • Walton C. Engineering aminotransferases for the biocatalytic production of aromatic D-amino acids. [PhD diss.], Ottawa (YOW): University of Ottawa. 2018.
  • Elyas YYA, Miyatani K, Bito T, et al. Active site pocket of streptomyces D-stereospecific amidohydrolase has functionalroles in aminolysis activity. J Biosci Bioeng. 2018;126:293–300.
  • Gao X, Ma Q, Song H, et al. Altered cofactor preference of thermostable StDAPDH by a single mutation at Lys159. Int. J. Mol. Sci. 2020;21:1788.
  • Barber JE, Damry AM, Calderini GF, et al. Continuous colorimetric screening assay for detection of D-amino acid aminotransferase mutants displaying altered substrate specificity. Anal Biochem. 2014;463:23–30.
  • Cramer P. AlphaFold2 and the future of structural biology. Nat Struct Mol Biol. 2021;28:704–705.
  • Voss M, Xiang C, Esque J, et al. Creation of (R)-amine transaminase activity within an α-amino acid transaminase scaffold. ACS Chem Biol. 2020;15:416–424.
  • Li D, Wu Q, Reetz MT. Focused rational iterative site-specific mutagenesis (FRISM). Methods Enzymol. 2020;643:225–242.
  • Dreiman G, Bictash M, Fish PV, et al. Changing the HTS paradigm: AI-driven iterative screening for hit finding. SLAS Discov. 2021;26:257–262.
  • Markel U, Essan i K, Besirlioglu V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev. 2020;49:233–262.
  • Hwang ET, Lee S. Multi-enzymatic cascade reactions via enzyme complex by immobilization. ACS Catal. 2019;5:4402–4425.
  • Chiang CJ, Lin LJ, Wang ZW, et al. Design of a noncovalently linked bifunctional enzyme for whole-cell biotransformation. Process Biochem. 2014;49:1122–1128.
  • Bilal M, Hussain N, Américo-Pinheiro JHP, et al. Multienzyme co-immobilized nano-assemblies: bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges. Int J Biol Macromol. 2021;186:735–749.
  • Wang L, Zhang H, Ching CB, et al. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Appl Microbiol Biot. 2012;94:1233–1241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.