325
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents

ORCID Icon, ORCID Icon & ORCID Icon
Pages 698-716 | Received 02 Nov 2021, Accepted 29 Jan 2023, Published online: 31 May 2023

References

  • IAEA. Selection of technical solutions for the management of radioactive waste. IAEA TECDOC-1817. Vienna: IAEA; 2017. p. 114.
  • Abdel Rahman RO, Ibrahium HA, Hung YT. Liquid radioactive wastes treatment: a review. Water. 2011;3:551–565.
  • IAEA (International Atomic Energy Agency). Handling and processing of radioactive waste from nuclear applications. Vienna: International Atomic Energy Agency; 2001.
  • Howden M. Radioactive effluent treatment plant – sellafield reprocessing factory. Proc Inst Mech Eng Part A. 1987;201:1–15.
  • IAEA. Management of low and intermediate level radioactive wastes. Vienna: International Atomic Energy Agency; 1988.
  • CEA. Le traitement et la décontamination des structures, des sols et des effluents. France: Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA); 2018.
  • Pace BR, Braun JB, Gilbert HK, et al. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex. No. INL/EXT-06-11969. Idaho Falls (ID): Idaho National Lab; 2006.
  • Saeed MU, Hussain N, Sumrin A, et al. Microbial bioremediation strategies with wastewater treatment potentialities–A review. Sci Total Environ. 2022;818:151754.
  • Lloyd JR. Microbial reduction of metals and radionuclides. FEMS Microbiol Rev. 2003;27:411–425.
  • Takeno N. Atlas of Eh-pH diagrams. Geological Survey of Japan, AIST; 2005. (Geological Survey of Japan Open File Report No 419). p. 102.
  • Lopez‐Fernandez M, Jroundi F, Ruiz‐Fresneda MA, et al. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microb Biotechnol. 2021;14:810–828.
  • Dhami PS, Kannan R, Naik PW, et al. Biosorption of americium using biomasses of various Rhizopus species. Biotech Lett. 2002;24:885–889.
  • Rogiers T, Van Houdt R, Williamson A, et al. Molecular mechanisms underlying bacterial uranium resistance. Front Microbiol. 2022;13:822197.
  • Banala UK, Das NPI, Toleti SR. Microbial interactions with uranium: towards an effective bioremediation approach. Environ Technol Innov. 2021;21:101254.
  • You W, Peng W, Tian Z, et al. Uranium bioremediation with U(VI)-reducing bacteria. Sci Total Environ. 2021;798:149107.
  • Newsome L, Morris K, Lloyd JR. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol. 2014;363:164–184.
  • Anderson RT, Vrionis HA, Ortiz-Bernad I, et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol. 2003;69:5884–5891.
  • Holmes DE, Giloteaux L, Williams KH, et al. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater. ISME J. 2013;7:1286–1298.
  • Alessi DS, Lezama-Pacheco JS, Janot N, et al. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. Environ Sci Technol. 2014;48:12842–12850.
  • Long PE, Williams KH, Davis JA, et al. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochim Cosmochim Acta. 2015;150:106–124.
  • Jemison NE, Bizjack MT, Johnson TM, et al. Influence of physical and chemical hydrology on bioremediation of a U-contaminated aquifer informed by reactive transport modeling incorporating 238U/235U ratios. Geochim Cosmochim Acta. 2020;269:303–328.
  • Watson DB, Wu WM, Mehlhorn T, et al. In situ bioremediation of uranium with emulsified vegetable oil as the electron donor. Environ Sci Technol. 2013;47:6440–6448.
  • Zhang P, He Z, Van Nostrand JD, et al. Dynamic succession of groundwater sulfate-reducing communities during prolonged reduction of uranium in a contaminated aquifer. Environ Sci Technol. 2017;51:3609–3620.
  • Wilpiszeski RL, Gionfriddo CM, Wymore AM, et al. In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLOS One. 2020;15:e0232437–18.
  • Moore R, Szecsody J, Rigali M, et al. Assessment of a hydroxyapatite permeable reactive barrier to remediate uranium at the old rifle site Colorado. No. SAND–2016-0995C. Albuquerque (NM): Sandia National Laboratories; 2016.
  • Vermeul VR, Bjornstad BN, Fritz BG, et al. 300 area uranium stabilization through polyphosphate injection. No. PNNL-18529. Richland (WA): Pacific Northwest National Lab; 2009.
  • Macaskie LE, Blackmore JD, Empson RM. Phosphatase overproduction and enhanced uranium accumulation by a stable mutant of a Citrobacter sp. isolated by a novel method. FEMS Microbiol Lett. 1988;55:157–162.
  • Newsome L, Morris K, Trivedi D, et al. Biostimulation by glycerol phosphate to precipitate recalcitrant uranium(IV) phosphate. Environ Sci Technol. 2015;49:11070–11078.
  • Safonov A, Lavrinovich E, Emel’yanov A, et al. Risk of colloidal and pseudo-colloidal transport of actinides in nitrate contaminated groundwater nearby radioactive waste repository after bioremediation. Sci Rep. 2022;12:4557.
  • Kersting AB. Plutonium transport in the environment. Inorg Chem. 2013;52:3533–3546.
  • Neu MP, Icopini GA, Boukhalfa H. Plutonium speciation affected by environmental bacteria. Radiochim Acta. 2005;93:705–714.
  • Panak PJ, Nitsche H. Interaction of actinides with aerobic soil bacteria. Radiochim Acta. 2001;89:499–504.
  • John SG, Ruggiero CE, Hersman LE, et al. Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol. 2001;35:2942–2948.
  • Icopini GA, Lack JG, Hersman LE, et al. Plutonium(V/VI) reduction by the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Appl Environ Microbiol. 2009;75:3641–3647.
  • Plymale AE, Bailey VL, Fredrickson JK, et al. Biotic and abiotic reduction and solubilization of Pu(IV)O2•xH2O(am) as affected by anthraquinone-2,6-disulfonate (AQDS) and ethylenediaminetetraacetate (EDTA). Environ Sci Technol. 2012;46:2132–2140.
  • Deo RP, Songkasiri W, Rittmann BE, et al. Surface complexation of neptunium(V) onto whole cells and cell components of Shewanella alga: modeling and experimental study. Environ Sci Technol. 2010;44:4930–4935.
  • Kaszuba JP, Runde WH. The aqueous geochemistry of neptunium: dynamic control of soluble concentrations with applications to nuclear waste disposal. Environ Sci Technol. 1999;33:4427–4433.
  • Lloyd JR, Yong P, Macaskie LE. Biological reduction and removal of Np(V) by two microorganisms. Environ Sci Technol. 2000;34:1297–1301.
  • Icopini GA, Boukhalfa H, Neu MP. Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria. Environ Sci Technol. 2007;41:2764–2769.
  • Das DK, Kumar S, Pathak PN, et al. Sorption of Am(III) on natural sediment: experiment and modeling. J Radioanal Nucl Chem. 2011;289:137–143.
  • Macaskie LE, Jeong BC, Tolley MR. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol Rev. 1994;14:351–367.
  • de Pádua Ferreira RV, Sakata SK, Isiki VLK, et al. Influence of americium-241 on the microbial population and biodegradation of organic waste. Environ Chem Lett. 2011;9:209–216.
  • Ozaki T, Gillow JB, Kimura T, et al. Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms. Radiochim Acta. 2004;92:741–748.
  • Moll H, Stumpf T, Merroun M, et al. Time-resolved laser fluorescence spectroscopy study on the interaction of Curium(III) with Desulfovibrio äspöensis DSM 10631 T. Environ Sci Technol. 2004;38:1455–1459.
  • Bader M, Moll H, Steudtner R, et al. Association of Eu (III) and Cm (III) onto an extremely halophilic archaeon. Environ Sci Pollut Res Int. 2019;26:9352–9364.
  • Ruiz-Fresneda MA, Lopez-Fernandez M, Martinez-Moreno MF, et al. Molecular binding of EuIII/CmIII by Stenotrophomonas bentonitica and its impact on the safety of future geodisposal of radioactive waste. Environ Sci Technol. 2020;54:15180–15190.
  • Lloyd JR, Sole VA, Van Praagh CVG, et al. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol. 2000;66:3743–3749.
  • Masters-Waage NK, Morris K, Lloyd JR, et al. Impacts of repeated redox cycling on technetium mobility in the environment. Environ Sci Technol. 2017;51:14301–14310.
  • McBeth JM, Lear G, Lloyd JR, et al. Technetium reduction and reoxidation in aquifer sediments. Geomicrobiol J. 2007;24:189–197.
  • Ngwenya N, Chirwa EMN. Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria. Miner Eng. 2010;23:463–470.
  • Fujita Y, Redden GD, Ingram JC, et al. Strontium incorporation into calcite generated by bacterial ureolysis. Geochim Cosmochim Acta. 2004;68:3261–3270.
  • Moore RC, Sanchez C, Holt K, et al. Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration. Radiochim Acta. 2004;92:719–723.
  • Cleary A, Lloyd JR, Newsome L, et al. Bioremediation of strontium and technetium contaminated groundwater using glycerol phosphate. Chem Geol. 2019;509:213–222.
  • Fujita Y, Ferris FG, Lawson RD, et al. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J. 2000;17:305–318.
  • Anderson S, Appanna VD. Microbial formation of crystalline strontium carbonate. FEMS Microbiol Lett. 1994;116:43–48.
  • Thorpe CL, Lloyd JR, Law GTW, et al. Strontium sorption and precipitation behaviour during bioreduction in nitrate impacted sediments. Chem Geol. 2012;306-307:114–122.
  • Szecsody JE, Williams M, Burns C, et al. Hanford 100N area apatite emplacement: laboratory results of Ca-Citrate-PO4 solution injection and Sr-90 immobilization in 100N sediments. No. PNNL-16891. Richland (WA): Pacific Northwest National Lab; 2007.
  • Vermeul VR, Szecsody JE, Fritz BG, et al. An injectable apatite permeable reactive barrier for in situ 90sr immobilization. Ground Water Monit Remediat. 2014;34:28–41.
  • Fujita Y, Taylor JL, Wendt LM, et al. Evaluating the potential of native ureolytic microbes to remediate a 90sr contaminated environment. Environ Sci Technol. 2010;44:7652–7658.
  • Fujita Y, Taylor JL, Gresham TLT, et al. Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ Sci Technol. 2008;42:3025–3032.
  • Foster L, Cleary A, Bagshaw H, et al. Biomineralization of Sr by the cyanobacterium Pseudanabaena catenata under alkaline conditions. Front Earth Sci. 2020;8:1–10.
  • Sivaperumal P, Kamala K, Rajaram R. Adsorption of cesium ion by marine actinobacterium Nocardiopsis sp. 13H and their extracellular polymeric substances (EPS) role in bioremediation. Environ Sci Pollut Res Int. 2018;25:4254–4267.
  • Tišáková L, Pipíška M, Godány A, et al. Bioaccumulation of 137Cs and 60Co by bacteria isolated from spent nuclear fuel pools. J Radioanal Nucl Chem. 2013;295:737–748.
  • Sasaki H, Shirato S, Tahara T, et al. Accumulation of radioactive cesium released from Fukushima Daiichi nuclear power plant in terrestrial cyanobacteria nostoc commune. Microbes Environ. 2013;28:466–469.
  • Amachi S. Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ. 2008;23:269–276.
  • Li HP, Brinkmeyer R, Jones WL, et al. Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at the Savannah River Site, South Carolina. Appl Environ Microbiol. 2011;77:2153–2160.
  • Lu Z, Jenkyns HC, Rickaby REM. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology. 2010;38:1107–1110.
  • Zhang S, Xu C, Creeley D, et al. Iodine-129 and Iodine-127 speciation in groundwater at Hanford Site, U.S.: iodate incorporation into calcite. Environ Sci Technol. 2013;47:13205–13206.
  • Campayo L, Grandjean A, Coulon A, et al. Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine. J Mater Chem. 2011;21:17609–17611.
  • Councell TB, Landa ER, Lovley DR. Microbial reduction of iodate. Water Air Soil Pollut. 1997;100:99–106.
  • Amachi S, Kawaguchi N, Muramatsu Y, et al. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Appl Environ Microbiol. 2007;73:5725–5730.
  • Reyes-Umana V, Henning Z, Lee K, et al. Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans. ISME J. 2022;16:38–49.
  • Strickland CE, Johnson CD, Lee BD, et al. Identification of promising remediation technologies for iodine in the UP-1 operable unit (No. PNNL-26934). Richland (WA): Pacific Northwest National Lab; 2017.
  • Amachi S, Mishima Y, Shinoyama H, et al. Active transport and accumulation of iodide by newly isolated marine bacteria. Appl Environ Microbiol. 2005;71:741–745.
  • Amachi S, Kamagata Y, Kanagawa T, et al. Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol. 2001;67:2718–2722.
  • Truex MJ, Freedman VL, Pearce CI, et al. Assessment of technologies for I-129 remediation in the 200-UP-1 operable unit (No. PNNL-29148). Richland (WA): Pacific Northwest National Lab; 2019.
  • Nancharaiah YV, Lens PNL. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 2015;79:61–80.
  • Roux M, Sarret G, Pignot-Paintrand I, et al. Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol. 2001;67:769–773.
  • Kagami T, Narita T, Kuroda M, et al. Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res. 2013;47:1361–1368.
  • Caccavo F, Lonergan DJ, Lovley DR, et al. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol. 1994;60:3752–3759.
  • Gao R, Wang Y, Zhang Y, et al. Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnol Biotechnol Equip. 2017;31:527–534.
  • Italiano F, Buccolieri A, Giotta L, et al. Response of the carotenoidless mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure. Int Biodeterior Biodegrad. 2009;63:948–957.
  • Kuippers G, Boothman C, Bagshaw H, et al. The biogeochemical fate of nickel during microbial ISA degradation; Implications for nuclear waste disposal. Sci Rep. 2018;8:1–11.
  • Zhan G, Li D, Zhang L. Aerobic bioreduction of nickel(II) to elemental nickel with concomitant biomineralization. Appl Microbiol Biotechnol. 2012;96:273–281.
  • Langmuir D, Herman JS. The mobility of thorium in natural waters at low temperatures department. Geochim Cosmochim Acta. 1980;44:1753–1766.
  • Reiller P, Moulin V, Casanova F, et al. Retention behaviour of humic substances onto mineral surfaces and consequences upon thorium (IV) mobility: case of iron oxides. Appl Geochem. 2002;17:1551–1562.
  • Kazy SK, D'Souza SF, Sar P. Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization. J Hazard Mater. 2009;163:65–72.
  • Yong P, Macaskie LE. Bioaccumulation of lanthanum, uranium and thorium, and use of a model system to develop a method for the biologically-mediated removal of plutonium from solution. J Chem Technol Biotechnol. 1998;71:15–26.
  • Mathur AK, Murthy VK. Biogenic treatment of uranium mill effluents. Uranium. 1988;4:385–394.
  • Zakeri F, Noghabi KA, Sadeghizadeh M, et al. Serratia sp. ZF03: an efficient radium biosorbent isolated from hot-spring waters in high background radiation areas. Bioresour Technol. 2010;101:9163–9170.
  • Cherrier J, Burnett WC, LaRock PA. Uptake of polonium and sulfur by bacteria. Geomicrobiol J. 1995;13:103–115.
  • Larock P, Hyun J-H, Boutelle S, et al. Bacterial mobilization of polonium. Geochim Cosmochim Acta. 1996;60:4321–4328.
  • Bahrou AS, Ollivier P, Hanson TE, et al. Volatile dimethyl polonium produced by aerobic marine microorganisms. Environ. Sci. Technol. 2012;46:11402–11407.
  • Francis AJ, Dodge CJ. Remediation of soils and wastes contaminated with uranium and toxic metals. Environ Sci Technol. 1998;32:3993–3998.
  • Francis AJ, Dodge CJ. Microbial mobilization of plutonium and other actinides from contaminated soil. J Environ Radioact. 2015;150:277–285.
  • Banaszak JE, Rittmann BE, Reed DT. Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixtures. J Radioanal Nucl Chem. 1999;241:385–435.
  • Pant P, Pant S. A review: advances in microbial remediation of trichloroethylene (TCE). J Environ Sci. 2010;22:116–126.
  • Hooker BS, Skeen RS, Truex MJ, et al. A demonstration of in situ bioremediation of CCl4 at the Hanford site (No. PNL-SA–23468). Richland, Washington: Pacific Northwest Lab; 1994.
  • Szecsody JE, Fruchter JS, Williams MD, et al. In situ chemical reduction of aquifer sediments: enhancement of reactive iron phases and TCE dechlorination. Environ Sci Technol. 2004;38:4656–4663.
  • Thomas RAP, Macaskie LE. Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution. Environ Sci Technol. 1996;30:2371–2375.
  • Bargar JR, Williams KH, Campbell KM, et al. Uranium redox transition pathways in acetate-amended sediments. Proc Natl Acad Sci U S A. 2013;110:4506–4511.
  • Morris K, Livens FR, Charnock JM, et al. An X-ray absorption study of the fate of technetium in reduced and reoxidised sediments and mineral phases. Appl Geochem. 2008;23:603–617.
  • Law GTW, Geissler A, Lloyd JR, et al. Geomicrobiological redox cycling of the transuranic element neptunium. Environ Sci Technol. 2010;44:8924–8929.
  • Weber KA, Cameron Thrash J, Ian Van Trump J, et al. Environmental and taxonomic bacterial diversity of anaerobic uranium(IV) bio-oxidation. Appl Environ Microbiol. 2011;77:4693–4696.
  • Moon HS, Komlos J, Jaffé PR. Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO42− reduction. J Contam Hydrol. 2009;105:18–27.
  • Burke IT, Boothman C, Lloyd JR, et al. Effects of progressive anoxia on the solubility of technetium in sediments. Environ Sci Technol. 2005;39:4109–4116.
  • Wang Z, Lee SW, Kapoor P, et al. Uraninite oxidation and dissolution induced by manganese oxide: a redox reaction between two insoluble minerals. Geochim Cosmochim Acta. 2013;100:24–40.
  • Powell BA, Duff MC, Kaplan DI, et al. Plutonium oxidation and subsequent reduction by Mn(IV) Minerals in Yucca Mountain tuff. Environ Sci Technol. 2006;40:3508–3514.
  • Li HP, Daniel B, Creeley D, et al. Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation. Appl Environ Microbiol. 2014;80:2693–2699.
  • Mathur AK, Dwivedy KK. A biogenic approach to the treatment of uranium mill effluents. Uranium. 1988;4:385–394.
  • Daly MJ. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol. 2009;7:237–245.
  • Veeramani H, Alessi DS, Suvorova EI, et al. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochim Cosmochim Acta. 2011;75:2512–2528.
  • Rai D, Gorby YA, Fredrickson JK, et al. Reductive dissolution of PuO2 (am): the effect of Fe(II) and hydroquinone. J Solution Chem. 2002;31:433–453.
  • Nakata K, Nagasaki S, Tanaka S, et al. Reduction rate of neptunium(V) in heterogeneous solution with magnetite. Radiochim Acta. 2004;92:145–150.
  • Watson DB, Phillips DH, Gu B. Performance evaluation of in-situ iron reactive barriers at the Oak Ridge Y-12 site (No. ORNL/TM-2001/193). Oak Ridge (TN): Oak Ridge National Lab; 2002.
  • Marshall TA, Morris K, Law GTW, et al. Incorporation of uranium into hematite during crystallization from ferrihydrite. Environ Sci Technol. 2014;48:3724–3731.
  • Marshall TA, Morris K, Law GTW, et al. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions. Environ Sci Technol. 2014;48:11853–11862.
  • Roberts H, Morris K, Mosselmans J, et al. Neptunium reactivity during co-precipitation and oxidation of Fe(II)/Fe(III) (oxyhydr)oxides. Geosciences. 2019;9:27.
  • Stylo M, Neubert N, Roebbert Y, et al. Mechanism of uranium reduction and immobilization in Desulfovibrio vulgaris biofilms. Environ Sci Technol. 2015;49:10553–10561.
  • Nash KL, Cleveland JM, Sullivan JC, et al. Kinetics of reduction of plutonium(VI) and neptunium(VI) by sulfide in neutral and alkaline solutions. Inorg Chem. 1986;25:1169–1173.
  • Lewis AE. Review of metal sulphide precipitation. Hydrometallurgy. 2010;104:222–234.
  • McCready RGL, Bland CJ, Gonzales DE. Preliminary studies on the chemical, physical, and biological stability of Ba/RaSO4 precipitates. Hydrometallurgy. 1980;5:109–116.
  • Mao C, Feng Y, Wang X, et al. Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev. 2015;45:540–555.
  • IAEA. Recirculation Advances in Technologies for the Treatment of Low and Intermediate Level Radioactive Liquid Wastes. 1994. (Technical report series 370), 1–216.
  • Puyol D, Batstone DJ, Hülsen T, et al. Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol. 2017;7:1–23.
  • Tsezos M, McCready RGL, Bell JP. The continuous recovery of uranium from biologically leached solutions using immobilized biomass. Biotechnol Bioeng. 1989;34:10–17.
  • MSE Technology Applications Inc. Selenium treatment/removal alternatives demonstration project: mine waste technology program activity III, project 20. Darby (PA): DIANE Publishing; 2001.
  • Bagwell CE, Saunders D, Morad J, et al. Biological system characterization to address biofouling of the 200 west pump-and-treat injection wells (No. PNNL-28021). Richland (WA): Pacific Northwest National Lab; 2018.
  • Dominguez-Benetton X, Varia JC, Pozo G, et al. Metal recovery by microbial electro-metallurgy. Prog Mater Sci. 2018;94:435–461.
  • Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–232.
  • Vijay A, Khandelwal A, Chhabra M, et al. Microbial fuel cell for simultaneous removal of uranium (VI) and nitrate. Chem Eng J. 2020;388:124157.
  • Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol. 2005;39:8943–8947.
  • Fredrickson JK, Kostandarithes HM, Li SW, et al. Reduction of Fe (III), Cr (VI), U (VI), and Tc (VII) by Deinococcus radiodurans R1. Appl Environ Microbiol. 2000;66:2006–2011.
  • Ruggiero CE, Boukhalfa H, Forsythe JH, et al. Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol. 2005;7:88–97.
  • Mergeay M, Van Houdt R. Metal response in Cupriavidus metallidurans Volume I: from habitats to genes and proteins. Springer briefs in biometals. Dordrecht, The Netherlands: Springer; 2015. p. 89.
  • Rogiers T, Merroun ML, Williamson AJ, et al. Cupriavidus metallidurans NA4 actively forms polyhydroxybutyrate-associated uranium-phosphate precipitates. J Hazard Mater. 2022;421:126737.
  • Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res. 2007;111:3–49.
  • Delrue F, Álvarez-Díaz PD, Fon-Sing S, et al. The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies. 2016;9:132.
  • Zhdanova NN, Redchits TI, Zheltonozhsky VA, et al. Accumulation of radionuclides from radioactive substrata by some micromycetes. J Environ Radioact. 2003;67:119–130.
  • Dighton J, Tugay T, Zhdanova N. Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett. 2008;281:109–120.
  • Rivasseau C, Farhi E, Atteia A, et al. An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry. Energy Environ. Sci. 2013;6:1230–1239.
  • Williams KH, Bargar JR, Lloyd JR, et al. Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol. 2013;24:489–497.
  • Appukuttan D, Seetharam C, Padma N, et al. PhoN-expressing, lyophilized, recombinant Deinococcus radiodurans cells for uranium bioprecipitation. J Biotechnol. 2011;154:285–290.
  • Xu R, Wu K, Han H, et al. Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. Chemosphere. 2018;211:1156–1165.
  • Li J, Webster TJ, Tian B. Functionalized nanomaterial assembling and biosynthesis using the extremophile deinococcus radiodurans for multifunctional applications. Small. 2019;15:e1900600.
  • Choi MH, Jeong SW, Shim HE, et al. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem Commun. 2017;53:3937–3940.
  • Fan Y-Y, Tang Q, Li F-H, et al. Enhanced bioreduction of radionuclides by driving microbial extracellular electron pumping with an engineered CRISPR Platform. Environ. Sci. Technol. 2021;55:11997–12008.
  • De Roy K, Marzorati M, Van den Abbeele P, et al. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol. 2014;16:1472–1481.
  • Van Landuyt J, Cimmino L, Dumolin C, et al. Microbial enrichment, functional characterization and isolation from a cold seep yield piezotolerant obligate hydrocarbon degraders. FEMS Microbiol Ecol. 2020;96:fiaa097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.