413
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology

, , , , &
Pages 618-640 | Received 03 Feb 2022, Accepted 20 Feb 2023, Published online: 09 May 2023

References

  • Raghukumar S. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Euro J Protistol. 2002;38:127–145.
  • Singh P, Liu Y, Li L, et al. Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol. 2014;98:5789–5805.
  • Sparrow FK. Biological observations on the marine fungi of Woods Hole waters. Biol Bull Mar Biol Lab Woods Hole. 1936;70:236–263.
  • Bongiorni L, Pignataro L, Santangelo G. Thraustochytrids (fungoid protists): an unexplored component of marine sediment microbiota. Scientia Marina. 2004;68:43–48.
  • Ramaiah N, Raghukumar S, Mangesh G, et al. Seasonal variations in carbon biomass of bacteria, thraustochytrids and microzooplankton in the Northern Arabian Sea. Deep Sea Res Part Ii-Topical Stud Oceanogr. 2005;52:1910–1921.
  • Raghukumar S, Schaumann K. An epifluorescence microscopy method for direct detection and enumeration of the fungi-like marine protists, the thraustochytrids. Limnol Oceanogr. 1993;38:182–187.
  • Chang KJL, Dunstan GA, Abell GCJ, et al. Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol. 2012;93:2215–2231.
  • Rosa SM, Galvagno MA, Velez CG. Adjusting culture conditions to isolate thraustochytrids from temperate and cold environments in southern Argentina. Mycoscience. 2011;52:242–252.
  • Bongiorni L, Pusceddu A, Danovaro R. Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol. 2005;41:299–305.
  • Li Q, Wang X, Liu XH, et al. Abundance and novel lineages of thraustochytrids in Hawaiian waters. Microb Ecol. 2013;66:823–830.
  • Amon J. Thraustochytrids and labyrinthulids of terrestrial, aquatic and hypersa- line environments of the great salt Lake, USA. Mycologia. 1978;70:1299–1301.
  • Raghukumar S, Sharma S, Raghukumar C, et al. Thraustochytrid and fungal component II. Laboratory studies on decomposition of marine detritus of the brown alga. J Exp Mar Bio Ecol. 1994;981:113–131.
  • Sharma S, Raghukumar C, Raghukumar S, et al. Thraustochytrid and fungal component of marine detritus II. Laboratory studies on decomposition of the brown alga Sargassum cinereum. J. Ag J Exp Mar Biol Ecol. 1994;175:227–242.
  • Fossier Marchan L, Lee Chang KJ, Nichols PD, et al. Taxonomy, ecology and biotechnological applications of thraustochytrids: a review. Biotechnol Adv. 2018;36:26–46.
  • Raikar MT, Raghukumar S, Vani V, et al. Thraustochytrid protists degrade hydrocarbons. Indian J Mar Sci. 2001;30:139–145.
  • Honda D, Yokochi T, Nakahara T, et al. Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18s ribosomal RNA gene. J Eukaryotic Microbiol. 1999;46:637–647.
  • Honda D, Yokochi T, Nakahara T, et al. Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol. 1999;46:637–647.
  • Ellenbogen BB, Aaronson S, Goldstein S, et al. Polyunsaturated fatty acids of aquatic fungi: possible phylogenetic significance. Comp Biochem Physiol. 1969;29:805–811.
  • Cavalier-Smith T, Allsopp M, Chao EE. Thraustochytrids are chromists, not fungi: 18s rRNA signatures of Heterokonta. Philos Trans R Soc Lond Ser Biol Sci. 1994;346:387–397.
  • Porter D. Phylum labyrinthulomycota. Canada: Jones and Bartlett; Mycologue; 1990.
  • Strassert JFH, Jamy M, Mylnikov AP, et al. New phylogenomic analysis of the enigmatic phylum telonemia further resolves the eukaryote tree of life. Mol Biol Evol. 2019;36:757–765.
  • Goldstein S, Belsky M. Axenic culture studies of a new marine phycomycete possessing an unusual type of asexual reproduction. Am J Bot. 1964;51:72–78.
  • Gaertner A. Revision of the Thraustochytriaceae (lower marine fungi). I. Ulkenia nov. gen., with description of three new species. Belgie: Veröffentlichungen des Institutes für Meeresforsch; 1977.
  • Yokoyama R, Salleh B, Honda D. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience. 2007;48:329–341.
  • Doi K, Honda D. Proposal ofMonorhizochytrium globosumgen. nov., comb. nov. (Stramenopiles, Labyrinthulomycetes) for formerThraustochytrium globosumbased on morphological features and phylogenetic relationships. Phycol Res. 2017;65:188–201.
  • Anderson OR, Cavalier-Smith T. Ultrastructure of Diplophrys parva, a new small freshwater species, and a revised analysis of Labyrinthulea (Heterokonta). Acta Protozool. 2012;51:291–304.
  • Gaertner A. Quantitative studies on the marine phycomycetes, chytrids and higher mycelial fungi of the upper Tay estuary. Proc R Soc Edinburgh Sect B Biol Sci. 1980;78:S57–S78.
  • Fan KW, Chen F. Production of high-value products by marine microalgae thraustocytrids. Netherlands: Elsevier; 2007.
  • Liu Y, Tang J, Li J, et al. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists. Appl Microbiol Biotechnol. 2014;98:9643–9652.
  • Raghukumar S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol. 2008;10:631–640.
  • Chang KJL, Mansour MP, Dunstan GA, et al. Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry. 2011;72:1460–1465.
  • Patel A, Mahboubi A, Horvath IS, et al. Volatile Fatty Acids (VFAs) generated by anaerobic digestion serve as feedstock for freshwater and marine oleaginous microorganisms to produce biodiesel and added-value compounds. Front Microbiol. 2021;12:614612.
  • Armenta RE, Burja A, Radianingtyas H, et al. Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q(10) from the thraustochytrid strain ONC-T18. J Agric Food Chem. 2006;54:9752–9758.
  • Aki T, Hachida K, Yoshinaga M, et al. Thraustochytrid as a potential source of carotenoids. J Amer Oil Chem Soc. 2003;80:789–794.
  • Jiang Y, Fan KW, Wong RDY, et al. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem. 2004;52:1196–1200.
  • Rao A, Rao L. Rao LG: carotenoids and human health. Pharmacol Res. 2007;55:207–216.
  • Paiva SA, Russell RM. Russell RM: beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr. 1999;18:426–433.
  • Kohno Y, Egawa Y, Itoh S, et al. Kinetic-study of quenching reaction of singlet oxygen and scavenging reaction of free-radical by squalene in N-butanol. Biochim Biophys Acta Lipids Metabol. 1995;1256:52–56.
  • Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14:540–554.
  • Smith TJ. Squalene: potential chemopreventive agent. Expert Opin Investig Drugs. 2000;9:1841–1848.
  • Gupta N, Sharma SK, Rana JC, et al. AFLP fingerprinting of tartary buckwheat accessions (Fagopyrum tataricum) displaying rutin content variation. Fitoterapia. 2012;83:1131–1137.
  • Aasen IM, Ertesvag H, Heggeset TM, et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol. 2016;100:4309–4321.
  • Ren LJ, Li J, Hu YW, et al. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp CCTCC M209059. Korean J Chem Eng. 2013;30:787–789.
  • Sun L, Ren L, Zhuang X, et al. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresour Technol. 2014;159:199–206.
  • Araujo GS, Matos LJBL, Goncalves LRB, et al. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol. 2011;102:5248–5250.
  • Li YH, Zhao ZB, Bai FW. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microbial Technol. 2007;41:312–317.
  • Xue FY, Miao JX, Zhang X, et al. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol. 2008;99:5923–5927.
  • Rimm EB, Appel LJ, Chiuve SE, et al.; On behalf of the American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the american heart association. Circulation. 2018;138: E35–E47.
  • Yokochi T, Honda D, Higashihara T, et al. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol. 1998;49:72–76.
  • Niyom K, Fan KW. Polyunsaturated fatty acids production by Schizochytrium sp. isolated from mangrove. Songklanakarin J Sci Technol. 2003;25.
  • Shirasaka N, Hirai Y, Nakabayashi H, et al. Effect of cyanocobalamin and p-toluic acid on the fatty acid composition of Schizochytrium limacinum (Thraustochytriaceae, Labyrinthulomycota). Mycoscience. 2005;46:358–363.
  • Maltsev Y, Maltseva I, Maltseva S, et al. Fatty acid content and profile of the novel strain of Coccomyxa elongata (Trebouxiophyceae, Chlorophyta) cultivated at reduced nitrogen and phosphorus concentrations(1). J Phycol. 2019;55:1154–1165.
  • Maltsev Y, Maltseva K. Fatty acids of microalgae: diversity and applications. Rev Environ Sci Biotechnol. 2021;20:515–547.
  • Hodson L, McQuaid SE, Karpe F, et al. Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate. Am J Physiol Endocrinol Metab. 2009;296: E64–E71.
  • Crawford MA, Bloom M, Broadhurst CL, et al. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids. 1999;34: S39–S47.
  • Singh A, Ward OP. Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210. J Industr Microbiol. 1996;16:370–373.
  • Chodchoey K, Verduyn C. Growth, fatty acid profile in major lipid classes and lipid fluidity of aurantiochytrium mangrovei sk-02 as a function of growth temperature. Braz J Microbiol. 2012;43:187–200.
  • Casula M, Olmastroni E, Gazzotti M, et al. Omega-3 polyunsaturated fatty acids supplementation and cardiovascular outcomes: do formulation, dosage, and baseline cardiovascular risk matter? updated meta-analysis of randomized controlled trials. Pharmacol Res. 2020;160:105060.
  • Tajuddin N, Shaikh A, Hassan A. Prescription omega-3 fatty acid products: considerations for patients with diabetes mellitus. Diabetes Metab Syndr Obes. 2016;9:109–118.
  • Reis CEG, Landim KC, Nunes ACS, et al. Safety in the hypertriglyceridemia treatment with n-3 polyunsaturated fatty acids on glucose metabolism in subjects with type 2 diabetes mellitus. Nutr Hospital. 2015;31:570–576.
  • Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83:1505s–1519s.
  • Zhang TT, Xu J, Wang YM, et al. Health benefits of dietary marine DHA/EPA-enriched glycerophospholipids. Progr Lipid Res. 2019;75:100997.
  • Li KL, Sinclair AJ, Zhao F, et al. Uncommon fatty acids and cardiometabolic health. Nutrients. 2018;10(10):1559.
  • Costantini L, Molinari R, Farinon B, et al. Impact of omega-3 fatty acids on the gut microbiota. Inter J Mol Sci. 2017;18:2645.
  • DiNicolantonio JJ, O'Keefe JH. The importance of marine omega-3s for brain development and the prevention and treatment of behavior, mood, and other brain disorders. Nutrients. 2020;12:2333.
  • Torrinhas RS, Calder PC, Lemos GO, et al. Parenteral fish oil: an adjuvant pharmacotherapy for coronavirus disease 2019? Nutrition. 2021;81:110900.
  • Tocher DR, Betancor MB, Sprague M, et al. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. 2019;11:89.
  • Dalli J, Chiang N, Serhan CN. Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat Med. 2015;21:1071–1075.
  • Johnson MB, Wen ZY. Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels. 2009;23:5179–5183.
  • Zeng Y, Ji XJ, Lian M, et al. Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp HX-308. Appl Biochem Biotechnol. 2011;164:249–255.
  • Klevebro S, Juul SE. Wood TR: a more comprehensive approach to the neuroprotective potential of long-chain polyunsaturated fatty acids in preterm infants is needed-should we consider maternal diet and the N-6:N-3 fatty acid ratio? Front Pediatr. 2020;7:533.
  • Sprecher H. The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids. Prostagl Leukotr Essential Fatty Acids. 2002;67:79–83.
  • Huang J, Aki T, Hachida K, et al. Profile of polyunsaturated fatty acids produced by Thraustochytrium sp. KK17-3. J Amer Oil Chem Soc. 2001;78:605–610.
  • Gao M, Song XJ, Feng YG, et al. Isolation and characterization of Aurantiochytrium sp: high docosahexaenoic acid (DHA) production by the newly isolated microalga, Aurantiochytrium sp SD116. J Oleo Sci. 2013;62:143–151.
  • Yu XJ, Yu ZQ, Liu YL, et al. Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp YLH70. Appl Biochem Biotechnol. 2015;177:1229–1240.
  • Dellero Y, Cagnac O, Rose S, et al. Proposal of a new thraustochytrid genus Hondaea gen. nov and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. Algal Res. 2018;35:125–141.
  • Chen JP, Liu HB. Nutritional indices for assessing fatty acids: a mini-review. Inter J Mol Sci. 2020;21:5695.
  • Quilodrán B, Hinzpeter I, Hormazabal E, et al. Docosahexaenoic acid (C22:6n − 3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources. Enzyme Microb Technol. 2010;47:24–30.
  • Wu FC, Ting YY, Chen HY. Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus. Fish Shellfish Immunol. 2003;14:223–238.
  • Zhao XM, Qiu X. Very long chain polyunsaturated fatty acids accumulated in triacylglycerol are channeled from phosphatidylcholine in thraustochytrium. Front Microbiol. 2019;10:645.
  • Jeh EJ, Kumaran RS, Hur BK. Lipid body formation by Thraustochytrium aureum (ATCC 34304) in response to cell age. Korean J Chem Eng. 2008;25:1103–1109.
  • Fan KW, Jiang Y, Faan YW, et al. Lipid characterization of mangrove thraustochytrid - Schizochytrium mangrovei. J Agric Food Chem. 2007;55:2906–2910.
  • Dellero Y, Rose S, Metton C, et al. Ecophysiology and lipid dynamics of a eukaryotic mangrove decomposer. Environ Microbiol. 2018;20:3057–3068.
  • Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progr Lipid Res. 2001;40:325–438.
  • Yang M, Fan Y, Wu PC, et al. An extended approach to quantify triacylglycerol in microalgae by characteristic fatty acids. Front Plant Sci. 2017;8:1949.
  • Stahl W, Sies H. beta-Carotene and other carotenoids in protection from sunlight. Am J Clin Nutr. 2012;96:1179s–1184s.
  • Bilbao PGS, Damiani C, Salvador GA, et al. Haematococcus pluvialis as a source of fatty acids and phytosterols: potential nutritional and biological implications. J Appl Phycol. 2016;28:3283–3294.
  • Ambati RR, Gogisetty D, Aswathanarayana RG, et al. Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr. 2019;59:1880–1902.
  • Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 2003;21:210–216.
  • Schmidt I, Schewe H, Gassel S, et al. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol. 2011;89:555–571.
  • Miranda AF, Tran TLN, Abramov T, et al. Marine protists and rhodotorula yeast as bio-convertors of marine waste into nutrient-rich deposits for mangrove ecosystems. Protist. 2020;171(3):125738.
  • Ye JR, Liu MM, He MX, et al. Illustrating and enhancing the biosynthesis of astaxanthin and docosahexaenoic acid in Aurantiochytrium sp. SK4. Marine Drugs. 2019;17:45.
  • Zhang K, Chen L, Liu J, et al. Effects of butanol on high value product production in Schizochytrium limacinum B4D1. Enzyme Microb Technol. 2017;102:9–15.
  • Singh D, Gupta A, Wilkens SL, et al. Understanding response surface optimisation to the modeling of Astaxanthin extraction from a novel strain Thraustochytrium sp S7. Algal Res. 2015;11:113–120.
  • Furlan VJM, Batista I, Bandarra N, et al. Conditions for the production of carotenoids by Thraustochytrium sp. ATCC 26185 and Aurantiochytrium sp. ATCC PRA-276. J Aquatic Food Product Technol. 2019;28:465–477.
  • Carmona ML, Naganuma T, Yamaoka Y. Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN-1 strain isolated from the Seto Inland Sea. Biosci Biotechnol Biochem. 2003;67:884–888.
  • Yamasaki T, Aki T, Shinozaki M, et al. Utilization of shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioengin. 2006;102:323–327.
  • Hannich JT, Umebayashi K, Riezman H. Distribution and Functions of Sterols and Sphingolipids. Cold Spring Harbor Perspect Biol. 2011;3(5):a004762.
  • Brumfield KM, Laborde SM, Moroney JV. Moroney JV: a model for the ergosterol biosynthetic pathway in Chlamydomonas reinhardtii. Euro J Phycol. 2017;52:64–74.
  • Shaghaghi M, Chen MT, Hsueh YW, et al. Effect of sterol structure on the physical Properties of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes determined using H-2 nuclear magnetic resonance. Langmuir. 2016;32:7654–7663.
  • Petrescu AD, Gallegos AM, Okamura Y, et al. Steroidogenic acute regulatory protein binds cholesterol and modulates mitochondrial membrane sterol domain dynamics. J Biol Chem. 2001;276:36970–36982.
  • Alavizargar A, Lutgehermoller M, Keller F, et al. How two sterols affect the biophysical properties of membrane mixtures: insights from molecular dynamics simulations. Euro Biophys J Biophysics Letters. 2019;48: S220–S220.
  • Yoshida M, Ioki M, Matsuura H, et al. Diverse steroidogenic pathways in the marine alga Aurantiochytrium. J Appl Phycol. 2020;32:1631–1642.
  • Lewis TE, Nichols PD, McMeekin TA. Sterol and squalene content of a docosahexaenoic-acid- producing thraustochytrid: influence of culture age, temperature, and dissolved oxygen. Marine Biotechnol. 2001;3:439–447.
  • Li J, Zhou H, Pan X, et al. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381. BMC Microbiol. 2019;19:256.
  • Ren LJ, Zhuang XY, Chen SL, et al. Introduction of omega-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. J Agric Food Chem. 2015;63:9770–9776.
  • Jiang YL, Zhu Q, Liao YN, et al. The delta 5,7-sterols and astaxanthin in the marine microheterotroph Schizochytrium sp. S31. J Am Oil Chem Soc. 2020;97:839–850.
  • Weete JD, Kim H, Gandhi SR, et al. Lipids and ultrastructure of Thraustochytrium sp. ATCC 26185. Lipids. 1997;32:839–845.
  • Randhir A, Laird DW, Maker G, et al. Microalgae: a potential sustainable commercial source of sterols. Algal Res. 2020;46:101772.
  • Micera M, Botto A, Geddo F, et al. Squalene: more than a Step toward Sterols. Antioxidants. 2020;9:(8):688.
  • Pappas A. Epidermal Surface Lipids. Proceedings of the 2nd International Conference: Sebaceous Gland, Acne, Rosacea and Related Disorders: Basic and Clinical Research, Clnical Entities and Treatment 2008. p. 1–4.
  • Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. Eur J Lipid Sci Technol. 2011;113:1299–1320.
  • Gohil N, Bhattacharjee G, Khambhati K, et al. Engineering strategies in microorganisms for the enhanced production of squalene: advances, challenges and opportunities (vol 7, 50, 2019). Front Bioengineer Biotechnol. 2019;7:50.
  • Hong WK, Heo SY, Park HM, et al. Characterization of a Squalene Synthase from the Thraustochytrid Microalga Aurantiochytrium sp KRS101. J Microbiol Biotechnol. 2013;23:759–765.
  • Fan KW, Aki T, Chen F, et al. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microbiol Biotechnol. 2010;26:1303–1309.
  • Kaya K, Nakazawa A, Matsuura H, et al. Thraustochytrid Aurantiochytrium sp 18W-13a Accummulates High Amounts of Squalene. Biosci Biotechnol Biochem. 2011;75:2246–2248.
  • Zhang A, Xie Y, He Y, et al. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes. Bioresour Technol. 2019;287:121415.
  • Chen G, Fan KW, Lu FP, et al. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N Biotechnol. 2010;27:382–389.
  • Nakazawa A, Matsuura H, Kose R, et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresource Technol. 2012;109:287–291.
  • Bhattacharjee P, Shukla VB, Singhal RS, et al. Studies on fermentative production of squalene. World J Microbiol Biotechnol. 2001;17:811–816.
  • Hoang MH, Ha NC, Thom LT, et al. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process. J Bioscie Bioengineer. 2014;118:632–639.
  • Ren LJ, Sun GN, Ji XJ, et al. Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp. Bioresour Technol. 2014;157:107–113.
  • Chang MH, Kim HJ, Jahng KY, et al. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl Microbiol Biotechnol. 2008;78:963–972.
  • Katabami A, Li L, Iwasaki M, et al. Production of squalene by squalene synthases and their truncated mutants in Escherichia coil. J Biosci Bioengineer. 2015;119:165–171.
  • Metz JG, Roessler P, Facciotti D, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science. 2001;293:290–293.
  • Gong MY, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 2016;34:1396–1412.
  • Hauvermale A, Kuner J, Rosenzweig B, et al. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids. 2006;41:739–747.
  • Meesapyodsuk D, Qiu X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185. J Lipid Res. 2016;57:1854–1864.
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004;86:807–815.
  • Sasso S, Pohnert G, Lohr M, et al. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiol Rev. 2012;36:761–785.
  • Lippmeier JC, Crawford KS, Owen CB, et al. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids. 2009;44:621–630.
  • Matsuda T, Sakaguchi K, Hamaguchi R, et al. Analysis of Delta12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304. J Lipid Res. 2012;53:1210–1222.
  • Ohara J, Sakaguchi K, Okita Y, et al. Two fatty acid elongases possessing C18-Delta6/C18-Delta9/C20-Delta5 or C16-Delta9 elongase activity in Thraustochytrium sp. ATCC 26185. Mar Biotechnol (NY). 2013;15:476–486.
  • Kang DH, Anbu P, Jeong YS, et al. Identification and characterization of a novel enzyme related to the synthesis of PUFAs derived from Thraustochytrium aureum ATCC 34304. Biotechnol Bioproc E. 2010;15:261–272.
  • Wang DS, Yu XJ, Zhu XY, et al. Transcriptome Mechanism of Utilizing Corn Steep Liquor as the Sole Nitrogen Resource for Lipid and DHA Biosynthesis in Marine Oleaginous Protist Aurantiochytrium sp. Biomolecules. 2019;9:695.
  • Song X, Tan Y, Liu Y, et al. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. J Agric Food Chem. 2013;61:9876–9881.
  • Liu Z, Zang X, Cao X, et al. Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. PLoS One. 2018;13:e0208853.
  • Liang YM, Liu Y, Tang J, et al. Transcriptomic profiling and gene disruption revealed that two genes related to PUFAs/DHA biosynthesis may be essential for cell growth of Aurantiochytrium sp. Marine Drugs. 2018;16:310.
  • Liu LX, Hu ZL, Li SF, et al. Comparative transcriptomic analysis uncovers genes responsible for the DHA enhancement in the mutant Aurantiochytrium sp. Microorganisms. 2020;8:529.
  • Hu F, Clevenger AL, Zheng P, et al. Low-temperature effects on docosahexaenoic acid biosynthesis inSchizochytriumsp. TIO01 and its proposed underlying mechanism. Biotechnol Biofuels. 2020;13:172.
  • Chang M, Zhang T, Guo X, et al. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem. 2020;94:190–197.
  • Ling X, Zhou H, Yang Q, et al. Functions of Enyolreductase (ER) Domains of PKS Cluster in Lipid Synthesis and Enhancement of PUFAs Accumulation in Schizochytrium limacinum SR21 Using Triclosan as a Regulator of ER. Microorganisms. 2020;8:300.
  • Meyer A, Cirpus P, Ott C, et al. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Delta 4-fatty acyl group desaturase. Biochemistry. 2003;42:9779–9788.
  • Li Z, Chen X, Li J, et al. Functions of PKS Genes in Lipid Synthesis of Schizochytrium sp. by Gene Disruption and Metabolomics Analysis. Mar Biotechnol. 2018;20:792–802.
  • Chaisawang M, Verduyn C, Chauvatcharin S, et al. Metabolic Networks and Bioenergetics of Aurantiochytrium sp B-072 during Storage Lipid Formation. Braz J Microbiol. 2012;43:1192–1205.
  • Kaulmann U, Hertweck C. Biosynthesis of polyunsaturated fatty acids by polyketide synthases. Angew Chem Int Ed. 2002;41:1866. +.
  • Morabito C, Bournaud C, Maes C, et al. The lipid metabolism in thraustochytrids. Prog Lipid Res. 2019;76:101007.
  • Hayashi S, Satoh Y, Ujihara T, et al. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci Rep. 2016;6:35441.
  • Okuyama H, Orikasa Y, Nishida T, et al. Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl Environ Microbiol. 2007;73:665–670.
  • Wang S, Lan C, Wang Z, et al. PUFA-synthase-specific PPTase enhanced the polyunsaturated fatty acid biosynthesis via the polyketide synthase pathway in Aurantiochytrium. Biotechnol Biofuels. 2020;13:152.
  • Zhu X, Li S, Liu L, et al. Genome sequencing and analysis of Thraustochytriidae sp. SZU445 provides novel insights into the polyunsaturated fatty acid biosynthesis pathway. Mar Drugs. 2020;18:118.
  • Kuczynska P, Jemiola-Rzeminska M, Strzalka K. Photosynthetic pigments in diatoms. Mar Drugs. 2015;13:5847–5881.
  • Farre G, Sanahuja G, Naqvi S, et al. Travel advice on the road to carotenoids in plants. Plant Science. 2010;179:28–48.
  • Iwasaka H, Koyanagi R, Satoh R, et al. A possible trifunctional beta-carotene synthase gene identified in the draft genome of Aurantiochytrium sp strain KH105. Genes. 2018;9:200.
  • Takaichi S. Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs. 2011;9:1101–1118.
  • Xiao R, Li X, Leonard E, et al. Investigation on the effects of cultivation conditions, fed-batch operation, and enzymatic hydrolysate of corn stover on the astaxanthin production by Thraustochytrium striatum. Algal Res. 2019;39:101475.
  • Ramirez J, Gutierrez H, Gschaedler A. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J Biotechnol. 2001;88:259–268.
  • Georgopapadakou NH, Dix BA, Smith SA, et al. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida-Albicans. Antimicrob Agents Chemother. 1987;31:46–51.
  • Heggeset TMB, Ertesvag H, Liu B, et al. Lipid and DHA-production in Aurantiochytrium sp. - Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci Rep. 2019;9:19470.
  • Yin FW, Zhan CT, Huang J, et al. Efficient co-production of docosahexaenoic acid oil and carotenoids in Aurantiochytrium sp. Appl Biochem Biotechnol. 2023;195:623–638.
  • Ma ZX, Tian MM, Tan YZ, et al. Response mechanism of the docosahexaenoic acid producer Aurantiochytrium under cold stress. Algal Res. 2017;25:191–199.
  • Kubo Y, Morimoto D, Shiroi M, et al. Transcriptional responses of Aurantiochytrium limacinum under light conditions. J Appl Microbiol. 2022;132:4330–4337.
  • Shene C, Paredes P, Flores L, et al. Dynamic flux balance analysis of biomass and lipid production by Antarctic thraustochytridOblongichytriumsp. RT2316-13. Biotechnol Bioengineer. 2020;117:3006–3017.
  • Sun XM, Ren LJ, Bi ZQ, et al. Adaptive evolution of microalgae Schizochytrium sp under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. Bioresour Technol. 2018;267:438–444.
  • Jiang JY, Zhu S, Zhang Y, et al. Integration of lipidomic and transcriptomic profiles reveals novel genes and regulatory mechanisms of Schizochytrium sp. in response to salt stress. Bioresour Technol. 2019;294:122231.
  • Leyton A, Shene C, Chisti Y, et al. Production of carotenoids and phospholipids by Thraustochytrium sp. in batch and repeated-batch culture. Marine Drugs. 2022;20:416.
  • Chen XH, He YD, Ye HK, et al. Different carbon and nitrogen sources regulated docosahexaenoic acid (DHA) production of Thraustochytriidae sp. PKU#SW8 through a fully functional polyunsaturated fatty acid (PUFA) synthase gene (pfaB). Bioresource Technol. 2020;318:124273.
  • Shi TQ, Wang LR, Zhang ZX, et al. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front Bioengineer Biotechnol. 2020;8:610.
  • Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol. 2009;100:3921–3926.
  • Srinuanpan S, Cheirsilp B, Prasertsan P, et al. Strategies to increase the potential use of oleaginous microalgae as biodiesel feedstocks: nutrient starvations and cost-effective harvesting process. Renew Energy. 2018;122:507–516.
  • Mulders KJM, Janssen JH, Martens DE, et al. Effect of biomass concentration on secondary carotenoids and triacylglycerol (TAG) accumulation in nitrogen-depleted Chlorella zofingiensis. Algal Res. 2014;6:8–16.
  • Urreta I, Ikaran Z, Janices I, et al. Revalorization of Neochloris oleoabundans biomass as source of biodiesel by concurrent production of lipids and carotenoids. Algal Res. 2014;5:16–22.
  • Wang FF, Gao BY, Wu MM, et al. A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Res. 2019;39:101466.
  • Liu J, Mao XM, Zhou WG, et al. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga Chlorella zofingiensis. Bioresource Technol. 2016;214:319–327.
  • Huang TY, Lu WC, Chu IM. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol. 2012;123:8–14.
  • Chi ZY, Hu B, Liu Y, et al. Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Appl Biochem Biotechnol. 2007;137:805–815.
  • Pugkaew W, Meetam M, Yokthongwattana K, et al. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. J Appl Phycol. 2019;31:969–979.
  • Ding W, Cui J, Zhao YT, et al. Enhancing Haematococcus pluvialis biomass and gamma-aminobutyric acid accumulation by two-step cultivation and salt supplementation. Bioresour Technol. 2019;285:121334.
  • Coesel SN, Baumgartner AC, Teles LM, et al. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol. 2008;10:602–611.
  • Goodson C, Roth R, Wang ZT, et al. Structural correlates of cytoplasmic and chloroplast lipid body synthesis in chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell. 2011;10:1592–1606.
  • Van Wagenen J, Miller TW, Hobbs S, et al. Effects of light and temperature on fatty acid production in nannochloropsis salina. Energies. 2012;5:731–740.
  • Paredes P, Larama G, Flores L, et al. Temperature differentially affects gene expression in antarctic Thraustochytrid Oblongichytrium sp. RT2316-13. Mar Drugs. 2020;18:563.
  • Wan MX, Zhang JK, Hou DM, et al. The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation. Bioresour Technol. 2014;167:276–283.
  • Barrero-Sicilia C, Silvestre S, Haslam RP, et al. Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci. 2017;263:194–200.
  • An ML, Mou SL, Zhang XW, et al. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp ICE-L. Bioresour Technol. 2013;134:151–157.
  • Zhao YT, Wang HP, Han BY, et al. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: a review. Bioresour Technol. 2019;274:549–556.
  • Ugya AY, Imam TS, Li AF, et al. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chem Ecol. 2020;36:174–193.
  • Guarnieri MT, Pienkos PT. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res. 2015;123:255–263.
  • Marco DE, Abram F. Editorial: using genomics, metagenomics and other "Omics" to assess valuable microbial ecosystem services and novel biotechnological applications. Front Microbiol. 2019;10:151.
  • Huo LJ, Hug JJ, Fu CZ, et al. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep. 2019;36:1412–1436.
  • Du H, Liao X, Gao Z, et al. Effects of Methanol on Carotenoids as Well as Biomass and Fatty Acid Biosynthesis in Schizochytrium limacinum B4D1. Appl Environ Microbiol. 2019;85:e01243–19.
  • Přibyl P, Cepák V, Zachleder V. Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol. 2012;94:549–561.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  • Lockhart DJ. Genes, genomics, SNPs, drug and chips. Am J Med Genetics. 2000;96:456–456.
  • Morabito C, Cigliano RA, Marechal E, et al. Illumina and PacBio DNA sequencing data, de novo assembly and annotation of the genome of Aurantiochytrium limacinum strain CCAP_4062/1. Data Brief. 2020;31:105729.
  • Liang LM, Zheng XH, Fan WF, et al. Genome and transcriptome analyses provide insight into the omega-3 long-chain polyunsaturated fatty acids biosynthesis of schizochytrium limacinum SR21. Front Microbiol. 2020;11:687.
  • Song ZQ, Stajich JE, Xie YX, et al. Comparative analysis reveals unexpected genome features of newly isolated Thraustochytrids strains: on ecological function and PUFAs biosynthesis. Bmc Genomics. 2018;19:541.
  • Liu B, Ertesvag H, Aasen IM, et al. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66. Genom Data. 2016;8:115–116.
  • Matsuzaki M, Misumi O, Shin I T, et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–657.
  • Cock JM, Sterck L, Rouze P, et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature. 2010;465:617–621.
  • Zhao XM, Dauenpen M, Qu CM, et al. Genomic Analysis of Genes Involved in the Biosynthesis of Very Long Chain Polyunsaturated Fatty Acids in Thraustochytrium sp 26185. Lipids. 2016;51:1065–1075.
  • Ye C, Qiao WH, Yu XB, et al. Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production. Bmc Genomics. 2015;16:799.
  • Maghembe R, Damian D, Makaranga A, et al. Omics for bioprospecting and drug discovery from bacteria and microalgae. Antibiotics. 2020;9:229.
  • Kodzius R, Gojobori T. Marine metagenomics as a source for bioprospecting. Marine Genomics. 2015;24:21–30.
  • Yu XJ, Chen H, Huang CY, et al. Transcriptomic mechanism of the phytohormone 6-benzylaminopurine (6-BAP) stimulating lipid and DHA synthesis in Aurantiochytrium sp. J Agric Food Chem. 2019;67:5560–5570.
  • Ren LJ, Hu XC, Zhao XY, et al. Transcriptomic analysis of the regulation of lipid fraction migration and fatty acid biosynthesis in Schizochytrium sp. Sci Rep. 2017;7:3562.
  • Yu XJ, Sun J, Sun YQ, et al. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Engineer J. 2016;112:258–268.
  • Liu ZX, You S, Tang BP, et al. Inositol as a new enhancer for improving lipid production and accumulation in Schizochytrium sp. Environ Sci Pollut Res. 2019;26:35497–35508.
  • Li Z, Ling X, Zhou H, et al. Screening chemical modulators of benzoic acid derivatives to improve lipid accumulation in Schizochytrium limacinum SR21 with metabolomics analysis. Biotechnol Biofuels. 2019;12:209.
  • Shene C, Garces M, Vergara D, et al. Production of lipids and proteome variation in a chilean Thraustochytrium striatum strain cultured under different growth conditions. Mar Biotechnol. 2019;21:99–110.
  • Fayyaz M, Chew KW, Show PL, et al. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv. 2020;43:107554.
  • Jeon S, Lim JM, Lee HG, et al. Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels. 2017;10:267.
  • Cui G-Z, Ma Z, Liu Y-J, et al. Overexpression of glucose-6-phosphate dehydrogenase enhanced the polyunsaturated fatty acid composition of Aurantiochytrium sp. SD116. Algal Res. 2016;19:138–145.
  • Cui G, Wang Z, Hong W, et al. Enhancing tricarboxylate transportation-related NADPH generation to improve biodiesel production by Aurantiochytrium. Algal Res. 2019;40:101505.
  • Suen YL, Tang H, Huang J, et al. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J Agric Food Chem. 2014;62:12392–12398.
  • Nutahara E, Uno AE, Ishibashi S, et al. The glycerol-3-phosphate acyltransferase PLAT2 functions in the generation of DHA-rich glycerolipids in Aurantiochytrium limacinum F26-b. PLoS One. 2019;14:e0211164.
  • Han X, Zhao Z, Wen Y, et al. Enhancement of docosahexaenoic acid production by overexpression of ATP-citrate lyase and acetyl-CoA carboxylase in Schizochytrium sp. Biotechnol Biofuels. 2020;13:131.
  • Wang F, Bi Y, Diao J, et al. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. Biotechnol Biofuels. 2019;12:141.
  • Li Z, Meng T, Ling X, et al. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J Agric Food Chem. 2018;66:5382–5391.
  • Yan J, Cheng R, Lin X, et al. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biotechnol. 2013;97:1933–1939.
  • Cui GZ, Ma ZX, Liu YJ, et al. Overexpression of glucose-6-phosphate dehydrogenase enhanced the polyunsaturated fatty acid composition of Aurantiochytrium sp SD116. Algal Res. 2016;19:138–145.
  • Watanabe K, Perez CMT, Kitahori T, et al. Improvement of fatty acid productivity of thraustochytrid, Aurantiochytrium sp. by genome editing. J Biosci Bioengineer. 2021;131:373–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.