521
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis

, , , , , , & show all
Pages 514-529 | Received 19 Jul 2022, Accepted 10 Mar 2023, Published online: 28 Jun 2023

References

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46:185–196.
  • Yamashita E. Astaxanthin as a medical food. FFHD. 2013;3:254–258.
  • Galarza JI, Vega BOA, Villón J, et al. Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress. Biotechnol Rep. 2019;23:e00351.
  • Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications–a review. Mar Drugs. 2014;12:128–152.
  • Tripathi U, Sarada R, Ravishankar GA. Effect of culture conditions on growth of green alga—H. pluvialis and astaxanthin production. Acta Physiol Plant. 2002;24:323–329.
  • Yuan JP, Peng J, Yin K, et al. Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 2011;55:150–165.
  • Zhao Y, Yue C, Ding W, et al. Butylated hydroxytoluene induces astaxanthin and lipid production in H. pluvialis under high-light and nitrogen-deficiency conditions. Bioresour Technol. 2018;266:315–321.
  • Gong M, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 2016;34:1396–1412.
  • Wan M, Zhang J, Hou D, et al. The effect of temperature on cell growth and astaxanthin accumulation of H. pluvialis during a light-dark cyclic cultivation. Bioresour Technol. 2014;167:276–283.
  • Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014;6:52–63.
  • Krause W, Henrich K, Paust J, et al. Preparation of astaxanthin. 1997. Available from: https://www.google.com/patents/US5654488
  • Shah MM, Liang Y, Cheng JJ, et al. Astaxanthin-producing green microalga H. pluvialis: from single cell to high value commercial products. Front Plant Sci. 2016;7:531.
  • Gauthier MR, Senhorinho GNA, Scott JA. Microalgae under environmental stress as a source of antioxidants. Algal Res. 2020;52:102104.
  • Li J, Zhu D, Niu J, et al. An economic assessment of astaxanthin production by large scale cultivation of H. pluvialis. Biotechnol Adv. 2011;29:568–574.
  • Capelli B, Bagchi D, Cysewski GR. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods. 2013;12:145–152.
  • Anila N, Simon DP, Chandrashekar A, et al. Metabolic engineering of Dunaliella salina for production of ketocarotenoids. Photosynth Res. 2016;127:321–333.
  • Chou YL, Ko CY, Yen CC, et al. Multiple promoters driving the expression of astaxanthin biosynthesis genes can enhance free-form astaxanthin production. J Microbiol Methods. 2019;160:20–28.
  • Jin J, Wang Y, Yao M, et al. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol Biofuels. 2018;11:230.
  • Zhu Q, Zeng D, Yu S, et al. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol Plant. 2018;11:1440–1448.
  • Routray W, Dave D, Cheema SK, et al. Biorefinery approach and environment-friendly extraction for sustainable production of astaxanthin from marine wastes. Crit Rev Biotechnol. 2019;39:469–488.
  • Visioli F, Artaria C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 2017;8:39–63.
  • Hussein G, Sankawa U, Goto H, et al. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 2006;69:443–449.
  • Jeevanantham G, Vinoth M, Hussain JM, et al. Biochemical characterization of five marine cyanobacteria species for their biotechnological applications. J Pharmacogn Phytochem. 2019;8:635–640.
  • Khoo KS, Lee SY, Ooi CW, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresour Technol. 2019;288:121606.
  • Aasen IM, Ertesvåg H, Heggeset TMB, et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol. 2016;100:4309–4321.
  • Iwasaka H, Koyanagi R, Satoh R, et al. A possible trifunctional β-carotene synthase gene identified in the draft genome of Aurantiochytrium sp. strain KH105. Genes. 2018;9:200.
  • Ye J, Liu M, He M, et al. Illustrating and enhancing the biosynthesis of astaxanthin and docosahexaenoic acid in Aurantiochytrium sp. SK4. Marine Drugs. 2019;17:45.
  • Lim KC, Yusoff FM, Shariff M, et al. Astaxanthin as feed supplement in aquatic animals. Rev Aquacult. 2018;10:738–773.
  • Ahuja M, Varavadekar J, Vora M, et al. Astaxanthin: current advances in metabolic engineering of the carotenoid. In Saran S, Babu V, Chaubey A, editors. High value fermentation products. Beverly: scrivener Publishing; 2019. p. 381–399.
  • Cunningham FX, Jr., Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell. 2011;23:3055–3069.
  • Renstrøm B, Berger H, Liaaen-Jensen S. Esterified, optical pure (3 S, 3’ S) -astaxanthin from flowers of Adonis annua. Biochem Syst Ecol. 1981;9:249–250.
  • Huang W, Lin Y, He M, et al. Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. J Agric Food Chem. 2018;66:891–897.
  • Zhang Z, Sun D, Zhang Y, et al. Glucose triggers cell structure changes and regulates astaxanthin biosynthesis in Chromochloris zofingiensis. Algal Res. 2019;39:101455.
  • Li MY, Sun L, Niu XT, et al. Astaxanthin protects lipopolysaccharide-induced inflammatory response in Channa argus through inhibiting NF-κB and MAPKs signaling pathways. Fish Shellfish Immunol. 2019;86:280–286.
  • Park JS, Chyun JH, Kim YK, et al. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab. 2010;7:18.
  • Wang J, Liu S, Wang H, et al. Xanthophyllomyces dendrorhous-derived astaxanthin regulates lipid metabolism and gut microbiota in obese mice induced by a high-fat diet. Marine Drugs. 2019;17:337.
  • Grimmig B, Daly L, Subbarayan M, et al. Astaxanthin is neuroprotective in an aged mouse model of Parkinson’s disease. Oncotarget. 2018;9:10388–10401.
  • Abd El-Hack ME, Abdelnour S, Alagawany M, et al. Microalgae in modern cancer therapy: current knowledge. Biomed Pharmacother. 2019;111:42–50.
  • Galasso C, Orefice I, Pellone P, et al. On the neuroprotective role of astaxanthin: new perspectives? Marine Drugs. 2018;16:247.
  • Brown DR, Gough LA, Deb SK, et al. Astaxanthin in exercise metabolism, performance and recovery: a review. Front Nutr. 2017;4:76.
  • Chung YH, Jeong SA, Choi HS, et al. Protective effects of ginsenoside Rg2 and astaxanthin mixture against UVB-induced DNA damage. Anim Cells Syst. 2018;22:400–406.
  • Hoffman R, Sultan LD, Saada A, et al. Astaxanthin extends lifespan via altered biogenesis of the mitochondrial respiratory chain complex III. Biorxiv. 2019. DOI: 10.1101/698001
  • Liu H, Liu M, Fu X, et al. Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota. Nutrients. 2018;10:1298.
  • Liu X, Chen X, Liu H, et al. Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in Caenorhabditis elegans. J Funct Foods. 2018a;44:127–136.
  • Wayama M, Ota S, Matsuura H, et al. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLOS One. 2013;8:e53618.
  • Hagen C, Siegmund S, Braune W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Euro J Phycol. 2002;37:217–226.
  • Domínguez A, Pereira S, Otero A. Does H. pluvialis need to sleep? Algal Research. 2019;44:101722.
  • Kraus D, Kleiber A, Ehrhardt E, et al. Three step flow focusing enables image-based discrimination and sorting of late stage 1 H. pluvialis cells. PLOS One. 2021;16:e0249192.
  • Aflalo C, Meshulam Y, Zarka A, et al. On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga H. pluvialis. Biotechnol Bioeng. 2007;98:300–305.
  • Pick U, Zarka A, Boussiba S, et al. A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus. Planta. 2019;249:31–47.
  • Onorato C, Rösch C. Comparative life cycle assessment of astaxanthin production with H. pluvialis in different photobioreactor technologies. Algal Res. 2020;50:102005.
  • Gwak Y, Hwang YS, Wang B, et al. Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in H. pluvialis. J Exp Bot. 2014;65:4317–4334.
  • Bartley GE, Scolnik PA, Beyer P. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and zeta-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur J Biochem. 1999;259:396–403.
  • Cunningham FX, Jr., Pogson B, Sun Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell. 1996;8:1613–1626.
  • Ronen G, Cohen M, Zamir D, et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 1999;17:341–351.
  • Lotan T, Hirschberg J. Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in H. pluvialis. FEBS Lett. 1995;364:125–128.
  • Kim J, Smith JJ, Tian L, et al. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol. 2009;50:463–479.
  • Bouvier F, Keller Y, d‘Harlingue A, et al. Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta. 1998;1391:320–328.
  • Ren Y, Deng J, Huang J, et al. Using green alga H. pluvialis for astaxanthin and lipid co-production: advances and outlook. Bioresour Technol. 2021;340:125736.
  • Hu Q, Huang D, Li A, et al. Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in H. pluvialis. Biotechnol Biofuels. 2021;14:82.
  • Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res. 2010;106:155–177.
  • Hoys C, Romero-Losada AB, Del Río E, et al. Unveiling the underlying molecular basis of astaxanthin accumulation in Haematococcus through integrative metabolomic-transcriptomic analysis. Bioresour Technol. 2021;332:125150.
  • Wang C, Wang K, Ning J, et al. Transcription factors from H. pluvialis involved in the regulation of astaxanthin biosynthesis under high light-sodium acetate stress. Front Bioeng Biotechnol. 2021;9:650178.
  • Gao Z, Meng C, Gao H, et al. Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga H. pluvialis by gibberellin A3 (GA3). Indian J Biochem Biophys. 2013a;50:548–553.
  • Gao Z, Hongzheng G, Chunxiao M. Effects of Abscisic acid (ABA) carotenogenesis expression and astaxanthin accumulation in H. pluvialis. Res J Biotechnol. 2013b;8:9–15.
  • Gao Z, Li Y, Wu G, et al. Transcriptome analysis in H. pluvialis: astaxanthin induction by salicylic Acid (SA) and jasmonic acid (JA. PLOS One. 2015;10:e0140609.)
  • Gao Z, Meng C, Zhang X, et al. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in H. pluvialis. Enzyme Microb Technol. 2012a;51:225–230.
  • Gao Z, Meng C, Zhang X, et al. Differential expression of carotenogenic genes, associated changes on astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLOS One. 2012b;7:e42243.
  • Gao Z, Miao X, Zhang X, et al. Comparative fatty acid transcriptomic test and iTRAQ-based proteomic analysis in H. pluvialis upon salicylic acid (SA) and jasmonic acid (JA) inductions. Algal Res. 2016;17:277–284.
  • Pan X, Chang F, Kang L, et al. Effects of gibberellin A3 on growth and microcystin production in Microcystis aeruginosa (cyanophyta). J Plant Physiol. 2008;165:1691–1697.
  • Vo TT, Lee C, Han SI, et al. Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of H. pluvialis. Bioresour Technol. 2016;220:85–93.
  • Galarza JI, Gimpel JA, Rojas V, et al. Over-accumulation of astaxanthin in H. pluvialis through chloroplast genetic engineering. Algal Res. 2018;31:291–297.
  • Kathiresan S, Chandrashekar A, Ravishankar GA, et al. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in H. pluvialis. J Biotechnol. 2015;196–197:33–41.
  • Sharon-Gojman R, Leu S, Zarka A. Antenna size reduction and altered division cycles in self-cloned, marker-free genetically modified strains of H. pluvialis. Algal Res. 2017;28:172–183.
  • Steinbrenner J, Sandmann G. Transformation of the green alga H. pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol. 2006;72:7477–7484.
  • Su Y, Wang J, Shi M, et al. Metabolomic and network analysis of astaxanthin-producing H. pluvialis under various stress conditions. Bioresour Technol. 2014;170:522–529.
  • Luo Q, Bian C, Tao M, et al. Genome and transcriptome sequencing of the astaxanthin-producing green microalga, H. pluvialis. Genome Biol Evol. 2019;11:166–173.
  • Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5:199–206.
  • Phukan UJ, Jeena GS, Shukla RK. WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci. 2016;7:760.
  • Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors. Trends Plant Sci. 2010;15:247–258.
  • Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol. 2015;167:295–306.
  • Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005;10:88–94.
  • Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta. 2012;1819:120–128.
  • Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 1999;27:470–478.
  • Xue GP. The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J. 2003;33:373–383.
  • Xing G, Li J, Li W, et al. AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. Biotechnol Biofuels. 2021;14:22.
  • Parsaeimehr A, Mancera-Andrade EI, Robledo-Padilla F, et al. A chemical approach to manipulate the algal growth, lipid content and high-value alpha-linolenic acid for biodiesel production. Algal Res. 2017;26:312–322.
  • Singh P, Kumari S, Guldhe A, et al. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renewable Sustainable Energy Rev. 2016;55:1–16.
  • Jiang Z, Li J, Qu LJ. Auxins. In Li J, Li C, Smith SM, editors. Hormone metabolism and signaling in plants. London: Academic Press; 2017. p. 39–76.
  • Hussain S, Zhang JH, Zhong C, et al. Effects of salt stress on rice growth, development characteristics, and the regulating ways: a review. J Integr Agric. 2017;16:2357–2374.
  • Rojas-Tapias DF, Bonilla RR, Dussán J. Effect of inoculation with plant growth-promoting bacteria on growth and copper uptake by sunflowers. Water Air Soil Pollut. 2012;223:643–654.
  • Arora S, Mishra G. Biochemical modulation of Monodopsis subterranea (Eustigmatophyceae) by auxin and cytokinin enhances eicosapentaenoic acid productivity. J Appl Phycol. 2019;31:3441–3452.
  • Han SF, Jin W, Abomohra AEF, et al. Enhancement of lipid production of Scenedesmus obliquus cultivated in municipal wastewater by plant growth regulator treatment. Waste Biomass Valor. 2019;10:2479–2485.
  • Lin B, Ahmed F, Du H, et al. Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. J Appl Phycol. 2018;30:1549–1561.
  • Renuka N, Guldhe A, Singh P, et al. Evaluating the potential of cytokinins for biomass and lipid enhancement in microalga Acutodesmus obliquus under nitrogen stress. Energy Convers Manag. 2017;140:14–23.
  • Czerpak R, Bajguz A, Gromek M, et al. Activity of salicylic acid on the growth and biochemism of Chlorella vulgaris Beijerinck. Acta Physiol Plant. 2002;24:45.
  • Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59:225–251.
  • Wen X, Geng Y, Li Y. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Bioresour Technol. 2014;161:297–303.
  • Sponsel VM, Hedden P. Gibberellin biosynthesis and inactivation. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action. Dordrecht, Netherlands: Springer; 2010. p. 63–94.
  • Lu Y, Jiang P, Liu S, et al. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of beta-carotene ketolase genes (bkts) in microalga H. pluvialis. Bioresour Technol. 2010;101:6468–6474.
  • Park WK, Yoo G, Moon M, et al. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl Biochem Biotechnol. 2013;171:1128–1142.
  • Yu XJ, Sun J, Sun YQ, et al. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J. 2016;112:258–268.
  • Meng CX, Teng CY, Jiang P, et al. Cloning and characterization of beta-carotene ketolase gene promoter in H. pluvialis. Acta Biochim Biophys Sin. 2005;37:270–275.
  • Meng CX, Wei W, Su Z, et al. Characterization of carotenoid hydroxylase gene promoter in H. pluvialis. Indian J Biochem Biophys. 2006;43:284–288.
  • Wang H, Feng T, Peng X, et al. Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf. 2009;72:1354–1362.
  • Raman V, Ravi S. Effect of salicylic acid and methyl jasmonate on antioxidant systems of H. pluvialis. Acta Physiol Plant. 2011;33:1043–1049.
  • Wang X, Meng C, Zhang H, et al. Transcriptomic and proteomic characterizations of the molecular response to blue light and salicylic acid in H. pluvialis. Marine Drugs. 2021b;20:1.
  • Czerpak R, Piotrowska A, Szulecka K. Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant. 2006;28:195–203.
  • Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones in algae. Russ J Plant Physiol. 2007;54:163–170.
  • Chowdhury MTH, Cho JY, Ahn DH, et al. Methyl jasmonate enhances phlorotannin production in the brown seaweed Ecklonia cava. J Appl Phycol. 2015;27:1651–1656.
  • Gahan PB. Matoo A. K. and Suttle J. C. The plant hormone ethylene CRC Press, Inc., Boca Raton, Florida 1991, 337. Photochem Anal. 1993;4(1):25.
  • Romera FJ, Smith AP, Pérez-Vicente R. Editorial: ethylene’s Role in plant mineral nutrition. Front Plant Sci. 2016;7:911–911.
  • Maillard P, Thepenier C, Gudin C. Determination of an ethylene biosynthesis pathway in the unicellular green alga, H. pluvialis. Relationship between growth and ethylene production. J Appl Phycol. 1993;5:93–98.
  • Zheng-Quan G, Chun-Xiao M. Impact of Extraneous ethylene concentrations to astaxanthin accumulation of H. pluvialis. Food Sci. 2007;28:376–380.
  • Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol. 1988;39:439–473.
  • Hirsch R, Hartung W, Gimmler H. Abscisic acid content of algae under stress. Botanica Acta. 1989;102:326–334.
  • Kobayashi M, Hirai N, Kurimura Y, et al. Abscisic acid-dependent algal morphogenesis in the unicellular green alga H. pluvialis. Plant Growth Regul. 1997;22:79–85.
  • Tietz A, Ruttkowski U, Kohler RR, et al. Further investigations on the occurrence and the effects of abscisic acid in algae. Biochemie Und Physiologie Der Pflanzen. 1989;184:259–266.
  • Cowan AK, Rose PD. Abscisic acid metabolism in salt-stressed cells of Dunaliella salina: possible interrelationship with beta-carotene accumulation. Plant Physiol. 1991;97:798–803.
  • Bateman JM, Purton S. Highly efficient expression of rabbit neutrophin peptide-1 gene in Chlorella ellipsoidea cells. Mol Gen Genet. 2000;263:404–410.
  • Rochaix JD, van Dillewijn J. Transformation of the green algae Chlamydomonas reinhardtii with yeast DNA. Nature. 1982;296:70–72.
  • Teng C, Qin S, Liu J, et al. Transient expression of lacZ in bombarded unicellular green alga H. pluvialis. J Appl Phycol. 2002;14:497–500.
  • Kathiresan S, Chandrashekar A, Ravishankar GA, et al. Agrobacterium-mediated transformation in the green alga H. pluvialis (chlorophyceae, volvocales)(1). J Phycol. 2009;45:642–649.
  • Sharon-Gojman R, Maimon E, Leu S, et al. Advanced methods for genetic engineering of H. pluvialis (Chlorophyceae, Volvocales. Algal Research. 2015;10:8–15.)
  • Waissman-Levy N, Leu S, Khozin-Goldberg I, et al. Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. Algal Res. 2019;40:101497.
  • Yuan G, Xu X, Zhang W, et al. Biolistic transformation of Haematococcus pluvialis with constructs based on the flanking sequences of its endogenous alpha tubulin gene. Front Microbiol. 2019;10:1749.
  • Gutiérrez CL, Gimpel J, Escobar C, et al. Chloroplast genetic tool for the green microalgae H. pluvialis (chlorophyceae, volvocales)(1). J Phycol. 2012;48:976–983.
  • Wang K, Cui Y, Wang Y, et al. Chloroplast genetic engineering of a unicellular green alga H. pluvialis with expression of an antimicrobial peptide. Mar Biotechnol. 2020;22:572–580.
  • Kayani SI, Shen Q, Ma Y, et al. The YABBY family transcription factor AaYABBY5 Directly targets cytochrome P450 monooxygenase (CYP71AV1) and double-bond reductase 2 (DBR2) involved in artemisinin biosynthesis in Artemisia Annua. Front Plant Sci. 2019;10:1084.
  • Kayani SI, Shen Q, Rahman SU, et al. Transcriptional regulation of flavonoid biosynthesis in Artemisia annua by AaYABBY5. Hortic Res. 2021;8:257.
  • Ma YN, Xu DB, Yan X, et al. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua. Plant Biotechnol J. 2021;19:1412–1428.
  • Xie L, Yan T, Li L, et al. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. J Exp Bot. 2021;72:1691–1701.
  • Kang NK, Jeon S, Kwon S, et al. Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels. 2015;8:200.
  • Riso VD, Raniello R, Maumus F, et al. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res. 2009;37:e96.
  • Rohr J, Sarkar N, Balenger S, et al. Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J. 2004;40:611–621.
  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
  • Kim H, Kim JS. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15:321–334.
  • Shin SE, Lim JM, Koh H, et al. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep. 2016;6:27810.
  • Darbani B, Eimanifar A, Stewart CN, et al. Methods to produce marker free transgenic plants. Biotechnol J. 2007;2:83–90.
  • Hlavova M, Turoczy Z, Bisova K. Improving microalgae for biotechnology—From genetics to synthetic biology. Biotechnol Adv. 2015;33:1194–1203.
  • Szyjka SJ, Mandal S, Schoepp NG, et al. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res. 2017;24:378–386.
  • Pattanayak V, Lin S, Guilinger JP, et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31:839–843.
  • Zhang XH, Tee LY, Wang X, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.