185
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning-based drug design for identification of thymidylate kinase inhibitors as a potential anti-Mycobacterium tuberculosis

, , , , , , , & show all
Pages 3874-3886 | Received 07 Mar 2023, Accepted 15 May 2023, Published online: 26 May 2023

References

  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
  • Abdjan, M. I., Aminah, N. S., Kristanti, A. N., Siswanto, I., Ilham, B., Wardana, A. P., & Takaya, Y. (2023). Structure-based approach: Molecular insight of pyranocumarins against α-glucosidase through computational studies. RSC Advances, 13(6), 3438–3447. https://doi.org/10.1039/d2ra07537g
  • Agarwal, V. (2015). Research on data preprocessing and categorization technique for smartphone review analysis. International Journal of Computer Applications, 131(4), 30–36. https://doi.org/10.5120/ijca2015907309
  • Alexandrova, L. A., Chekhov, V. O., Shmalenyuk, E. R., Kochetkov, S. N., El-Asrar, R. A., & Herdewijn, P. (2015). Synthesis and evaluation of C-5 modified 2′-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthase. Bioorganic & Medicinal Chemistry, 23(22), 7131–7137. https://doi.org/10.1016/j.bmc.2015.09.053
  • Ali, M., & Aittokallio, T. (2019). Machine learning and feature selection for drug response prediction in precision oncology applications. Biophysical Reviews, 11(1), 31–39. https://doi.org/10.1007/s12551-018-0446-z
  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers [Paper presentation]. At the Proceedings of the Fifth Annual Workshop on Computational Learning Theory. https://doi.org/10.1145/130385.130401
  • Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2
  • Calvet, G., Aguiar, R. S., Melo, A. S. O., Sampaio, S. A., de Filippis, I., Fabri, A., Araujo, E. S. M., de Sequeira, P. C., de Mendonça, M. C. L., de Oliveira, L., Tschoeke, D. A., Schrago, C. G., Thompson, F. L., Brasil, P., Dos Santos, F. B., Nogueira, R. M. R., Tanuri, A., & de Filippis, A. M. B. (2016). Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: A case study. The Lancet. Infectious Diseases, 16(6), 653–660. https://doi.org/10.1016/S1473-3099(16)00095-5
  • Chan, G. G., Koch, C. M., & Connors, L. H. (2017). Blood proteomic profiling in inherited (ATTRm) and acquired (ATTRwt) forms of transthyretin-associated cardiac amyloidosis. Journal of Proteome Research, 16(4), 1659–1668. https://doi.org/10.1021/acs.jproteome.6b00998
  • Choi, J. Y., Plummer, M. S., Starr, J., Desbonnet, C. R., Soutter, H., Chang, J., Miller, J. R., Dillman, K., Miller, A. A., & Roush, W. R. (2012). Structure guided development of novel thymidine mimetics targeting Pseudomonas aeruginosa thymidylate kinase: From hit to lead generation. Journal of Medicinal Chemistry, 55(2), 852–870. https://doi.org/10.1021/jm201349f
  • Dickson, C. J., Rosso, L., Betz, R. M., Walker, R. C., & Gould, I. R. (2012). GAFFlipid: A General Amber Force Field for the accurate molecular dynamics simulation of phospholipid. Soft Matter, 8(37), 9617–9627. https://doi.org/10.1039/c2sm26007g
  • Familiar, O., Munier-Lehmann, H., Negri, A., Gago, F., Douguet, D., Rigouts, L., Hernández, A.-I., Camarasa, M.-J., & Pérez-Pérez, M.-J. (2008). Exploring acyclic nucleoside analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. ChemMedChem, 3(7), 1083–1093. https://doi.org/10.1002/cmdc.200800060
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
  • Fioravanti, E., Adam, V., Munier-Lehmann, H., & Bourgeois, D. (2005). The crystal structure of Mycobacterium tuberculosis thymidylate kinase in complex with 3‘-azidodeoxythymidine monophosphate suggests a mechanism for competitive inhibition. Biochemistry, 44(1), 130–137. https://doi.org/10.1021/bi0484163
  • Gagneux, S. (2018). Ecology and evolution of Mycobacterium tuberculosis. Nature Reviews. Microbiology, 16(4), 202–213. https://doi.org/10.1038/nrmicro.2018.8
  • Gasse, C., Douguet, D., Huteau, V., Marchal, G., Munier-Lehmann, H., & Pochet, S. (2008). Substituted benzyl-pyrimidines targeting thymidine monophosphate kinase of Mycobacterium tuberculosis: Synthesis and in vitro anti-mycobacterial activity. Bioorganic & Medicinal Chemistry, 16(11), 6075–6085. https://doi.org/10.1016/j.bmc.2008.04.045
  • Ghori, K. M., Abbasi, R. A., Awais, M., Imran, M., Ullah, A., & Szathmary, L. (2020). Performance analysis of different types of machine learning classifiers for non-technical loss detection. IEEE Access, 8, 16033–16048. https://doi.org/10.1109/ACCESS.2019.2962510
  • Ghufran, M., Ullah, M., Khan, H. A., Ghufran, S., Ayaz, M., Siddiq, M., Abbas, S. Q., Hassan, S. S. U., & Bungau, S. (2023). In-silico lead druggable compounds identification against SARS COVID-19 main protease target from in-house, chembridge and zinc databases by structure-based virtual screening, molecular docking and molecular dynamics simulations. Bioengineering, 10(1), 100. https://doi.org/10.3390/bioengineering10010100
  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/radiology.143.1.7063747
  • Hoffer, L., & Horvath, D. (2013). S4MPLE–sampler for multiple protein–ligand entities: Simultaneous docking of several entities. Journal of Chemical Information and Modeling, 53(1), 88–102. https://doi.org/10.1021/ci300495r
  • Hu, Y., Xu, L., He, Y. L., Pang, Y., Lu, N., Liu, J., Shen, J., Zhu, D. M., Feng, X., Wang, Y. W., & Yang, C. (2017). Prevalence and molecular characterization of second-line drugs resistance among multidrug-resistant Mycobacterium tuberculosis isolates in Southwest of China. BioMed Research International, 2017, 1–9. https://doi.org/10.1155/2017/4563826
  • Kawatkar, S. P., Keating, T. A., Olivier, N. B., Breen, J. N., Green, O. M., Guler, S. Y., Hentemann, M. F., Loch, J. T., McKenzie, A. R., Newman, J. V., Otterson, L. G., & Martínez-Botella, G. (2014). Antibacterial inhibitors of gram-positive thymidylate kinase: Structure–activity relationships and chiral preference of a new hydrophobic binding region. Journal of Medicinal Chemistry, 57(11), 4584–4597. https://doi.org/10.1021/jm500463c
  • Khan, A., Adil, S., Qudsia, H. A., Waheed, Y., Alshabrmi, F. M., & Wei, D.-Q. (2023). Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Computers in Biology and Medicine, 158, 106797. https://doi.org/10.1016/j.compbiomed.2023.106797
  • Liu, B., Li, F., Zhou, T., Tang, X. Q., & Hu, G. W. (2018). Quinoline derivatives with potential activity against multidrug‐resistant tuberculosis. Journal of Heterocyclic Chemistry, 55(8), 1863–1873. https://doi.org/10.1002/jhet.3241
  • Marcos, A. (2003). The global situation of MDR-TB. Tuberculosis, 83, 44–51.
  • Martínez-Botella, G., Breen, J. N., Duffy, J. E. S., Dumas, J., Geng, B., Gowers, I. K., Green, O. M., Guler, S., Hentemann, M. F., Hernandez-Juan, F. A., Joseph-McCarthy, D., Kawatkar, S., Larsen, N. A., Lazari, O., Loch, J. T., Macritchie, J. A., McKenzie, A. R., Newman, J. V., Olivier, N. B., … Keating, T. A. (2012). Discovery of selective and potent inhibitors of gram-positive bacterial thymidylate kinase (TMK). Journal of Medicinal Chemistry, 55(22), 10010–10021. https://doi.org/10.1021/jm3011806
  • Melville, J. L., Burke, E. K., & Hirst, J. D. (2009). Machine learning in virtual screening. Combinatorial Chemistry & High Throughput Screening, 12(4), 332–343. https://doi.org/10.2174/138620709788167980
  • Parida, S. K., Axelsson-Robertson, R., Rao, M. V., Singh, N., Master, I., Lutckii, A., Keshavjee, S., Andersson, J., Zumla, A., & Maeurer, M. (2015). Totally drug‐resistant tuberculosis and adjunct therapies. Journal of Internal Medicine, 277(4), 388–405. https://doi.org/10.1111/joim.12264
  • Peramo, A. (2016). Solvated and generalised Born calculations differences using GPU CUDA and multi-CPU simulations of an antifreeze protein with AMBER. Molecular Simulation, 42(15), 1263–1273. https://doi.org/10.1080/08927022.2016.1183000
  • Pronovost, P., & Jha, A. K. (2014). Did hospital engagement networks actually improve care. The New England Journal of Medicine, 371(8), 691–693. https://doi.org/10.1056/NEJMp1405800
  • Sagavkar, S. R., & Devkar, S. R. (2018). Tuberculosis: A review. Asian Journal of Pharmaceutical Research, 8(3), 191–194. https://doi.org/10.5958/2231-5691.2018.00033.3
  • Sahu, S., Ditiu, L., Lawson, L., Ntoumi, F., Arakaki, D., & Zumla, A. (2020). UN General Assembly tuberculosis targets: Are we on track? Lancet (London, England), 395(10228), 928–930. https://doi.org/10.1016/S0140-6736(20)30565-1
  • Shmalenyuk, E. R., Chernousova, L. N., Karpenko, I. L., Kochetkov, S. N., Smirnova, T. G., Andreevskaya, S. N., Chizhov, A. O., Efremenkova, O. V., & Alexandrova, L. A. (2013). Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorganic & Medicinal Chemistry, 21(17), 4874–4884. https://doi.org/10.1016/j.bmc.2013.07.003
  • Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958. https://doi.org/10.1021/ci034160g
  • Teimouri, M., Junaid, M., Saleem, S., Khan, A., & Ali, A. (2016). In-vitro analysis of selective nutraceuticals binding to human transcription factors through computer aided molecular docking predictions. Bioinformation, 12(7), 354–358. https://doi.org/10.6026/97320630012354
  • Toti, K. S., Verbeke, F., Risseeuw, M. D., Frecer, V., Munier-Lehmann, H., & Van Calenbergh, S. (2013). Synthesis and evaluation of 5′-modified thymidines and 5-hydroxymethyl-2′-deoxyuridines as Mycobacterium tuberculosis thymidylate kinase inhibitors. Bioorganic & Medicinal Chemistry, 21(1), 257–268. https://doi.org/10.1016/j.bmc.2012.10.018
  • Van Poecke, S., Munier-Lehmann, H., Helynck, O., Froeyen, M., & Van Calenbergh, S. (2011). Synthesis and inhibitory activity of thymidine analogues targeting Mycobacterium tuberculosis thymidine monophosphate kinase. Bioorganic & Medicinal Chemistry, 19(24), 7603–7611. https://doi.org/10.1016/j.bmc.2011.10.021
  • Vanheusden, V., Munier-Lehmann, H., Pochet, S., Herdewijn, P., & Van Calenbergh, S. (2002). Synthesis and evaluation of thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorganic & Medicinal Chemistry Letters, 12(19), 2695–2698. https://doi.org/10.1016/s0960-894x(02)00551-6
  • Venugopala, K. N., Tratrat, C., Pillay, M., Chandrashekharappa, S., Al-Attraqchi, O. H. A., Aldhubiab, B. E., Attimarad, M., Alwassil, O. I., Nair, A. B., Sreeharsha, N., Venugopala, R., Morsy, M. A., Haroun, M., Kumalo, H. M., Odhav, B., & Mlisana, K. (2020). In silico design and synthesis of tetrahydropyrimidinones and tetrahydropyrimidinethiones as potential thymidylate kinase inhibitors exerting anti-TB activity against Mycobacterium tuberculosis. Drug Design, Development and Therapy, 14, 1027–1039. https://doi.org/10.2147/DDDT.S228381
  • Wang, S., & Zhang, X. (2021). Design strategies of photoacoustic molecular probes. Chembiochem: A European Journal of Chemical Biology, 22(2), 308–316. https://doi.org/10.1002/cbic.202000514
  • Wei-Ya, L., Yu-Qing, D., Yang-Chun, M., Xin-Hua, L., Ying, M., & Wang, R.-L. (2019). Exploring the cause of the inhibitor 4AX attaching to binding site disrupting protein tyrosine phosphatase 4A1 trimerization by molecular dynamic simulation. Journal of Biomolecular Structure & Dynamics, 37(18), 4840–4851. https://doi.org/10.1080/07391102.2019.1567392
  • Winters-Hilt, S., & Merat, S. (2007). SVM clustering. BMC Bioinformatics, 8(S7) https://doi.org/10.1186/1471-2105-8-S7-S18
  • Zhang, R., Li, X., Zhang, X., Qin, H., & Xiao, W. (2021). Machine learning approaches for elucidating the biological effects of natural products. Natural Product Reports, 38(2), 346–361. https://doi.org/10.1039/d0np00043d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.