287
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning and classical MD simulation to identify inhibitors against the P37 envelope protein of monkeypox virus

, , , , , , & show all
Pages 3935-3948 | Received 22 Mar 2023, Accepted 16 May 2023, Published online: 23 May 2023

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389
  • Andrei, G., & Snoeck, R. (2010). Cidofovir activity against poxvirus infections. Viruses, 2(12), 2803–2830. https://doi.org/10.3390/v2122803
  • Banie, H., Sinha, A., Thomas, R. J., Sircar, J. C., & Richards, M. L. (2007). 2-Phenylimidazopyridines, a new series of golgi compounds with potent antiviral activity. Journal of Medicinal Chemistry, 50(24), 5984–5993. https://doi.org/10.1021/jm0704907
  • Behera, B. K., Parhi, J., Dehury, B., Rout, A. K., Khatei, A., Devi, A. L., & Mandal, S. C. (2022). Molecular characterization and structural dynamics of Aquaporin1 from walking catfish in lipid bilayers. International Journal of Biological Macromolecules, 196, 86–97. https://doi.org/10.1016/j.ijbiomac.2021.12.014
  • Bekker, H., Berendsen, H., Dijkstra, E., Achterop, S., Van Drunen, R., Van der Spoel, D., Sijbers, A., Keegstra, H., Reitsma, B., & Renardus, M. (1993, January). Gromacs: A parallel computer for molecular dynamics simulations. Physics Computing, 92, 252–256.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Ilya N, & Shindyalov, P. E. B (2000). The protein data bank. Nucleic acids research, 44(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bolhuis, P. G. (2006). Sampling kinetic protein folding pathways using all-atom models. Lecture Notes in Physics, 703, 393–433. https://doi.org/10.1007/3-540-35273-2_11
  • Bunge, E. M., Hoet, B., Chen, L., Lienert, F., Weidenthaler, H., Baer, L. R., & Steffen, R. (2022). The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLOS Neglected Tropical Diseases, 16(2), e0010141. https://doi.org/10.1371/journal.pntd.0010141
  • Coronaviridae. (n.d).
  • Dalton, J. A. R., & Jackson, R. M. (2007). An evaluation of automated homology modelling methods at low target-template sequence similarity. Bioinformatics (Oxford, England), 23(15), 1901–1908. https://doi.org/10.1093/bioinformatics/btm262
  • Dehury, B., Raina, V., Misra, N., & Suar, M. (2021). Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: A molecular dynamics simulations study. Journal of Biomolecular Structure & Dynamics, 39(18), 7231–7245. https://doi.org/10.1080/07391102.2020.1802348
  • Dehury, B., Sahu, M., Sahu, J., Sarma, K., Sen, P., Modi, M. K., Barooah, M., & Choudhury, M. D. (2013). Structural analysis and molecular dynamics simulations of novel δ-endotoxin Cry1Id from Bacillus thuringiensis to pave the way for development of novel fusion proteins against insect pests of crops. Journal of Molecular Modeling, 19(12), 5301–5316. https://doi.org/10.1007/s00894-013-2010-x
  • Dehury, B., Tang, N., Blundell, T. L., & Kepp, K. P. (2019). Structure and dynamics of γ-secretase with presenilin 2 compared to presenilin 1. RSC Advances, 9(36), 20901–20916. https://doi.org/10.1039/c9ra02623a
  • Dehury, B., Tang, N., & Kepp, K. P. (2020). Insights into membrane-bound presenilin 2 from all-atom molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 38(11), 3196–3210. https://doi.org/10.1080/07391102.2019.1655481
  • Field, H. J., & Vere Hodge, R. A. (2008). Antiviral Agents. Encyclopedia of Virology, 142–154. https://doi.org/10.1016/B978-012374410-4.00360-5
  • Florescu, D. F., & Keck, M. A. (2014). Development of CMX001 (Brincidofovir) for the treatment of serious diseases or conditions caused by dsDNA viruses. Expert Review of anti-Infective Therapy, 12(10), 1171–1178. https://doi.org/10.1586/14787210.2014.948847
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Galiceanu, M., Reis, A. S., & Dolgushev, M. (2014). Dynamics of semiflexible scale-free polymer networks. The Journal of Chemical Physics, 141(14), 144902. https://doi.org/10.1063/1.4897563
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.
  • Grosenbach, D. W., Honeychurch, K., Rose, E. A., Chinsangaram, J., Frimm, A., Maiti, B., Lovejoy, C., Meara, I., Long, P., & Hruby, D. E. (2018). Oral Tecovirimat for the Treatment of Smallpox. The New England Journal of Medicine, 379(1), 44–53. https://doi.org/10.1056/nejmoa1705688
  • Grosenbach, D. W., Jordan, R., & Hruby, D. E. (2011a). Development of the small-molecule antiviral ST-246® as a smallpox therapeutic. Future Virology, 6(5), 653–671. https://doi.org/10.2217/fvl.11.27
  • Grosenbach, D. W., Jordan, R., & Hruby, D. E. (2011b). Development of the small-molecule antiviral ST-246® as a smallpox therapeutic. Future Virology, 6(5), 653–671. https://doi.org/10.2217/fvl.11.27
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Hostetler, K. Y. (2009). Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: Current state of the art. Antiviral Research, 82(2), A84–A98. https://doi.org/10.1016/j.antiviral.2009.01.005
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 27–28, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Husain, M., Weisberg, A., & Moss, B. (2003). Topology of epitope-tagged F13L protein, a major membrane component of extracellular vaccinia virions. Virology, 308(2), 233–242. https://doi.org/10.1016/S0042-6822(03)00063-1
  • ICMR Performs Genome Sequencing for Monkeypox; Reveals All Belong to Same Lineage. (n.d).
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jawarkar, R. D., Bakal, R. L., Zaki, M. E. A., Al-Hussain, S., Ghosh, A., Gandhi, A., Mukerjee, N., Samad, A., Masand, V. H., & Lewaa, I. (2022). QSAR based virtual screening derived identification of a novel hit as a SARS CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches. Arabian Journal of Chemistry, 15(1), 103499. https://doi.org/10.1016/j.arabjc.2021.103499
  • Jones, P. E., Pérez-Segura, C., Bryer, A. J., Perilla, J. R., & Hadden-Perilla, J. A. (2021). Molecular dynamics of the viral life cycle: Progress and prospects. Current Opinion in Virology, 50(1), 128–138. https://doi.org/10.1016/j.coviro.2021.08.003
  • Jordan, R., Leeds, J. M., Tyavanagimatt, S., & Hruby, D. E. (2010). Development of ST-246® for treatment of poxvirus infections. Viruses, 2(11), 2409–2435. https://doi.org/10.3390/v2112409
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Klimochkin, Y. N., Leonova, M. V., Korzhev, I. R., Moiseev, I. K., Vladyko, G. V., Korobchenko, L. V., Boreko, E. I., & Nikolaeva, S. N. (1992). Antiviral activity of adamantane series hydroxy derivatives. Pharmaceutical Chemistry Journal, 26(7–8), 616–618. https://doi.org/10.1007/BF00777145
  • Klimochkin, Y. N., Moiseev, I. K., Abramov, O. V., Vladyko, G. V., Korobchenko, L. V., & Boreko, E. I. (1991). Synthesis and antiviral activity of sulfur-containing derivatives of adamantane. Pharmaceutical Chemistry Journal, 25(7), 489–492. https://doi.org/10.1007/BF00772006
  • Klimochkin, Y. N., Moiseev, I. K., Boreko, E. I., Vladyko, G. V., & Korobchenko, L. V. (1989). Synthesis and antiviral activity of nitrogen-containing adamantane derivatives. Pharmaceutical Chemistry Journal, 23(4), 304–307. https://doi.org/10.1007/BF00758419
  • Klimochkin, Y. N., Moiseev, I. K., Vladyko, G. V., Korobchenko, L. V., & Boreko, E. I. (1991). Synthesis and investigation of viral-inhibitory activity of nitrogen-containing derivatives of adamantane. Pharmaceutical Chemistry Journal, 25(7), 485–488. https://doi.org/10.1007/BF00772005
  • Klimochkin, Y. N., Shiryaev, V. A., & Leonova, M. V. (2015). Antiviral properties of cage compounds. New prospects. Russian Chemical Bulletin, 64(7), 1473–1496. https://doi.org/10.1007/s11172-015-1035-y
  • Kmiec, D., & Kirchhoff, F. (2022). Monkeypox: A new threat? International Journal of Molecular Sciences, 23(14), 7866. https://doi.org/10.3390/ijms23147866
  • Kolocouris, N., Kolocouris, A., Foscolos, G. B., Fytas, G., Neyts, J., Padalko, E., Balzarini, J., Snoeck, R., Andrei, G., & De Clercq, E. (1996). Synthesis and antiviral activity evaluation of some new aminoadamantane derivatives. 2. Journal of Medicinal Chemistry, 39(17), 3307–3318. https://doi.org/10.1021/jm950891z
  • Lam, H. Y. I., Guan, J. S., & Mu, Y. (2022). In silico repurposed drugs against monkeypox virus. Molecules, 27(16), 5277. https://doi.org/10.3390/molecules27165277
  • Lam, T. P., Tran, V. H., Mai, T. T., Lai, N. V. T., Dang, B. T. N., Le, M. T., Tran, T. D., Trinh, D. T. T., & Thai, K. M. (2022). Identification of diosmin and flavin adenine dinucleotide as repurposing treatments for monkeypox virus: A computational study. International Journal of Molecular Sciences, 23(19), 11570. https://doi.org/10.3390/ijms231911570
  • Laskowski, R. A., & Thornton, J. M. (2022). PDBsum extras: SARS-CoV-2 and AlphaFold models. Protein Science : A Publication of the Protein Society, 31(1), 283–289. https://doi.org/10.1002/pro.4238
  • Li, D., Liu, Y., Li, K., & Zhang, L. (2022). Targeting F13 from monkeypox virus and variola virus by tecovirimat: Molecular simulation analysis. The Journal of Infection, 85(4), e99–e101. https://doi.org/10.1016/j.jinf.2022.07.001
  • Lu, C., Wu, C., Ghoreishi, D., Chen, W., Wang, L., Damm, W., Ross, G. A., Dahlgren, M. K., Russell, E., Von Bargen, C. D., Abel, R., Friesner, R. A., & Harder, E. D. (2021). OPLS4: Improving force field accuracy on challenging regimes of chemical space. Journal of Chemical Theory and Computation, 17(7), 4291–4300. https://doi.org/10.1021/acs.jctc.1c00302
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Meyer, H., Perrichot, M., Stemmler, M., Emmerich, P., Schmitz, H., Varaine, F., Shungu, R., Tshioko, F., & Formenty, P. (2002). Outbreaks of disease suspected of being due to human monkeypox virus infection in the Democratic Republic of Congo in 2001. Journal of Clinical Microbiology, 40(8), 2919–2921. https://doi.org/10.1128/JCM.40.8.2919-2921.2002
  • Moiseev, I. K., Kon’Kov, S. A., Ovchinnikov, K. A., Kilyaeva, N. M., Bormasheva, K. M., Nechaeva, O. N., Leonova, M. V., Klimochkin, Y. N., Balakhnin, S. M., Bormotov, N. I., Serova, O. A., & Belanov, E. F. (2012). Synthesis and antiviral activity of new adamantane derivatives. Pharmaceutical Chemistry Journal, 45(10), 588–592. https://doi.org/10.1007/s11094-012-0686-3
  • Nosé, S. (2002). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 100(1), 191–198. https://doi.org/10.1080/00268970110089108
  • Ode, H., Nakashima, M., Kitamura, S., Sugiura, W., & Sato, H. (2012). Molecular dynamics simulation in virus research. Frontiers in Microbiology, 3(JUL), 258. https://doi.org/10.3389/fmicb.2012.00258
  • Olson, V. A., Smith, S. K., Foster, S., Li, Y., Lanier, E. R., Gates, I., Trost, L. C., & Damon, I. K. (2014). In vitro efficacy of brincidofovir against variola virus. Antimicrobial Agents and Chemotherapy, 58(9), 5570–5571. https://doi.org/10.1128/AAC.02814-14
  • Painter, W., Robertson, A., Trost, L. C., Godkin, S., Lampert, B., & Painter, G. (2012). First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001, a broad-spectrum oral drug active against double-stranded DNA viruses. Antimicrobial Agents and Chemotherapy, 56(5), 2726–2734. https://doi.org/10.1128/AAC.05983-11
  • Parker, S., Handley, L., & Buller, R. M. (2008). Therapeutic and prophylactic drugs to treat orthopoxvirus infections. Future Virology, 3(6), 595–612. https://doi.org/10.2217/17460794.3.6.595
  • Parker, S., Touchette, E., Oberle, C., Almond, M., Robertson, A., Trost, L. C., Lampert, B., Painter, G., & Buller, R. M. (2008). Efficacy of therapeutic intervention with an oral ether-lipid analogue of cidofovir (CMX001) in a lethal mousepox model. Antiviral Research, 77(1), 39–49. https://doi.org/10.1016/j.antiviral.2007.08.003
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Petersen, B. W., & Damon, I. K. (2014). Orthopoxviruses: Vaccinia (smallpox vaccine), variola (smallpox), monkeypox, and cowpox. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 2, 1694–1702.e3. https://doi.org/10.1016/B978-1-4557-4801-3.00135-1
  • Prichard, M. N., & Kern, E. R. (2012). Orthopoxvirus targets for the development of new antiviral agents. Antiviral Research, 94(2), 111–125. https://doi.org/10.1016/j.antiviral.2012.02.012
  • Rabaan, A. A., Abas, A. H., Tallei, T. E., Al‐Zaher, M. A., Al‐Sheef, N., Fatimawali, M., Al‐Nass, E. Z., Al‐Ebrahim, E. A., Effendi, Y., Idroes, R., Alhabib, M. F., Al‐Fheid, H. A., Adam, A. A., & Bin Emran, T. (2023). Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. Journal of Medical Virology, September, 95(1), e28306. https://doi.org/10.1002/jmv.28306
  • Ren, F., Ding, X., Zheng, M., Korzinkin, M., Cai, X., Zhu, W., Mantsyzov, A., Aliper, A., Aladinskiy, V., Cao, Z., Kong, S., Long, X., Man Liu, B. H., Liu, Y., Naumov, V., Shneyderman, A., Ozerov, I. V., Wang, J., Pun, F. W., … Zhavoronkov, A. (2023). AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical Science, 14(6), 1443–1452. https://doi.org/10.1039/d2sc05709c
  • Sahoo, C. R., Paidesetty, S. K., Dehury, B., & Padhy, R. N. (2020). Molecular dynamics and computational study of Mannich-based coumarin derivatives: Potent tyrosine kinase inhibitor. Journal of Biomolecular Structure & Dynamics, 38(18), 5419–5428. https://doi.org/10.1080/07391102.2019.1701554
  • Schuler, L. D., Daura, X., Van Gunsteren, W. F., Rapold, R. F., Suter, U. W., Darden, T. T. A., York, D., Pedersen, L. G., Fuchs, P. F. J., Hansen, H. S., Hünenberger, P. H., Horta, B. A. C., Sulatha, M. S., Natarajan, U., Hess, B., Bekker, H., Berendsen, H. J. C. C., Fraaije, J. G. E. M., Postma, J. P. M., … Larsson, P. (2001). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3586–3616.
  • Schwede, T., Sali, A., Eswar, N., & Peitsch, M. C. (2008). Protein structure modeling. In Computational structural biology: Methods and applications (Vol.1, pp. 3–39). https://doi.org/10.1142/9789812778789_0001
  • Sen Gupta, P. S., Panda, S. K., Nayak, A. K., & Rana, M. K. (2023). Identification and investigation of a cryptic binding pocket of the P37 envelope protein of monkeypox virus by molecular dynamics simulations. The Journal of Physical Chemistry Letters, 14(13), 3230–3235. https://doi.org/10.1021/acs.jpclett.3c00087
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shiryaev, V. A., Skomorohov, M. Y., Leonova, M. V., Bormotov, N. I., Serova, O. A., Shishkina, L. N., Agafonov, A. P., Maksyutov, R. A., & Klimochkin, Y. N. (2021). Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity. European Journal of Medicinal Chemistry, 221, 113485. https://doi.org/10.1016/j.ejmech.2021.113485
  • Siegrist, E. A., & Sassine, J. (2023). Antivirals with activity against monkeypox: A clinically oriented review. Clinical Infectious Diseases, 76(1), 155–164. https://doi.org/10.1093/cid/ciac622
  • Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Gupta, S., & Kumar, S. (2021). Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study. Computers in Biology and Medicine, 130, 104185. https://doi.org/10.1016/j.compbiomed.2020.104185
  • Sokolova, A. S., Kovaleva, K. S., Yarovaya, O. I., Bormotov, N. I., Shishkina, L. N., Serova, O. A., Sergeev, A. A., Agafonov, A. P., Maksuytov, R. A., & Salakhutdinov, N. F. (2021). (+)-Camphor and (−)-borneol derivatives as potential anti-orthopoxvirus agents. Archiv Der Pharmazie, 354(6), 2100038. https://doi.org/10.1002/ardp.202100038
  • Subramaniam, S., & Kleywegt, G. J. (2022). A paradigm shift in structural biology. Nature Methods, 19(1), 20–23. https://doi.org/10.1038/s41592-021-01361-7
  • Suslov, E. V., Mozhaytsev, E. S., Korchagina, D. V., Bormotov, N. I., Yarovaya, O. I., Volcho, K. P., Serova, O. A., Agafonov, A. P., Maksyutov, R. A., Shishkina, L. N., & Salakhutdinov, N. F. (2020). New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections. RSC Medicinal Chemistry, 11(10), 1185–1195. https://doi.org/10.1039/d0md00108b
  • The Lancet. (2022). Monkeypox: A global wake-up call. The Lancet, 400(10349), 337. https://doi.org/10.1016/S0140-6736(22)01422-2
  • US CDC. (2022). Interim clinical guidance for the treatment of monkeypox. US Centres for Disease Control and Prevention. https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html
  • Vanommeslaeghe, K., & MacKerell, A. D. (2012). Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. https://doi.org/10.1021/ci300363c
  • Venkatesan, P. (2022). Monkeypox transmission—what we know so far. The Lancet Respiratory Medicine, 10(11), e101. https://doi.org/10.1016/S2213-2600(22)00386-1
  • Wang, F., Liu, S., Mao, X., Cui, R., Yang, B., & Wang, Y. (2021). Crystal structure of a phospholipase d from the plant-associated bacteria serratia plymuthica strain as9 reveals a unique arrangement of catalytic pocket. International Journal of Molecular Sciences, 22(6), 3219. https://doi.org/10.3390/ijms22063219
  • Altschul, S. F.,Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Yan, X., Lu, Y., Li, Z., Wei, Q., Gao, X., Wang, S., Wu, S., & Cui, S. (2022). PointSite: A point cloud segmentation tool for identification of protein ligand binding atoms. Journal of Chemical Information and Modeling, 62(11), 2835–2845. https://doi.org/10.1021/acs.jcim.1c01512
  • Yang, L. W., Eyal, E., Bahar, I., & Kitao, A. (2009). Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): Insights into functional dynamics. Bioinformatics (Oxford, England), 25(5), 606–614. https://doi.org/10.1093/bioinformatics/btp023
  • Yang, G., Pevear, D. C., Davies, M. H., Collett, M. S., Bailey, T., Rippen, S., Barone, L., Burns, C., Rhodes, G., Tohan, S., Huggins, J. W., Baker, R. O., Buller, R. L. M., Touchette, E., Waller, K., Schriewer, J., Neyts, J., DeClercq, E., Jones, K., Hruby, D., & Jordan, R. (2005). An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. Journal of Virology, 79(20), 13139–13149. https://doi.org/10.1128/JVI.79.20.13139-13149.2005
  • Yinka-Ogunleye, A., Aruna, O., Ogoina, D., Aworabhi, N., Eteng, W., Badaru, S., Mohammed, A., Agenyi, J., Etebu, E. N., Numbere, T.-W., Ndoreraho, A., Nkunzimana, E., Disu, Y., Dalhat, M., Nguku, P., Mohammed, A., Saleh, M., McCollum, A., Wilkins, K., … Ihekweazu, C. (2018). Reemergence of human monkeypox in Nigeria, 2017. Emerging Infectious Diseases, 24(6), 1149–1151. https://doi.org/10.3201/eid2406.180017
  • Zheng, L., Meng, J., Lin, M., Lv, R., Cheng, H., Zou, L., Sun, J., Li, L., Ren, R., & Wang, S. (2022). Structure prediction of the entire proteome of monkeypox variants. Acta Materia Medica, 1(2), 260–264. https://doi.org/10.15212/AMM-2022-0017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.