91
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Multispectroscopic and computational techniques to study the interaction of anthraquinone appended sensor with calf thymus DNA

Binding of anthraquinone based compound with ctDNA

, &
Pages 4370-4378 | Received 14 Mar 2023, Accepted 16 May 2023, Published online: 25 May 2023

References

  • Afrin, S., Rahman, Y., Sarwar, T., Husain, M. A., Ali, A., Shamsuzzaman, & Tabish, M. (2017). Molecular spectroscopic and thermodynamic studies on the interaction of anti-platelet drug ticlopidine with calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 186, 66–75. https://doi.org/10.1016/j.saa.2017.05.073
  • Akdi, K., Vilaplana, R. A., Kamah, S., & González-Vílchez, F. (2005). Effects of Tris and Hepes buffers on the interaction of palladium–diaminopropane complexes with DNA. Journal of Inorganic Biochemistry, 99(6), 1360–1368. https://doi.org/10.1016/j.jinorgbio.2005.03.010
  • Al-Otaibi, J. S., Spittle, P. T., & El Gogary, T. M. (2017). Interaction of anthraquinone anti-cancer drugs with DNA: Experimental and computational quantum chemical study. Journal of Molecular Structure, 1127, 751–760. https://doi.org/10.1016/j.molstruc.2016.08.007
  • Ameen, F., Siddiqui, S., Kausar, T., Nayeem, S. M., Sarwar, T., Rizvi, M. M. A., Rehman, S. U., & Tabish, M. (2022). Interaction of memantine with calf thymus DNA: An in-vitro and in-silico approach and cytotoxic effect on the cancerous cell lines. Journal of Biomolecular Structure & Dynamics, 40(3), 1216–1229. https://doi.org/10.1080/07391102.2020.1823886
  • Bi, S., Qiao, C., Song, D., Tian, Y., Gao, D., Sun, Y., & Zhang, H. (2006). Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sensors and Actuators B: Chemical, 119(1), 199–208. https://doi.org/10.1016/j.snb.2005.12.014
  • Bi, S., Yan, L., Sun, Y., & Zhang, H. (2011). Investigation of ketoprofen binding to human serum albumin by spectral methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78(1), 410–414. https://doi.org/10.1016/j.saa.2010.11.002
  • Fu, Z., Cui, Y., Cui, F., & Zhang, G. (2016). Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153, 572–579. https://doi.org/10.1016/j.saa.2015.09.011
  • Geng, S., Wu, Q., Shi, L., & Cui, F. (2013). Spectroscopic study one thiosemicarbazone derivative with ctDNA using ethidium bromide as a fluorescence probe. International Journal of Biological Macromolecules, 60, 288–294. https://doi.org/10.1016/j.ijbiomac.2013.06.002
  • Gholivand, M. B., Kashanian, S., & Peyman, H. (2012). DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 87, 232–240. https://doi.org/10.1016/j.saa.2011.11.045
  • Hajian, R., Hossaini, P., Mehrayin, Z., Woi, P. M., & Shams, N. (2017). DNA-binding studies of valrubicin as a chemotherapy drug using spectroscopy and electrochemical techniques. Journal of Pharmaceutical Analysis, 7(3), 176–180. https://doi.org/10.1016/j.jpha.2017.01.003
  • Husain, M. A., Rehman, S. U., Ishqi, H. M., Sarwar, T., & Tabish, M. (2015). Spectroscopic and molecular docking evidence of aspirin and diflunisal binding to DNA: A comparative study. RSC Advances, 5(79), 64335–64345. https://doi.org/10.1039/C5RA09181K
  • Hussain, I., Fatima, S., Siddiqui, S., Ahmed, S., & Tabish, M. (2021). Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: Insights from multi-spectroscopic, thermodynamic and bioinformatics approaches. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 260, 119952. https://doi.org/10.1016/j.saa.2021.119952
  • Islam, M. M., Chakraborty, M., Pandya, P., Al Masum, A., Gupta, N., & Mukhopadhyay, S. (2013). Binding of DNA with Rhodamine B: Spectroscopic and molecular modeling studies. Dyes and Pigments, 99(2), 412–422. https://doi.org/10.1016/j.dyepig.2013.05.028
  • Jana, B., Senapati, S., Ghosh, D., Bose, D., & Chattopadhyay, N. (2012). Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: a contrast to the mode of binding with flavonoids having additional hydroxyl groups. The Journal of Physical Chemistry B, 116(1), 639–645. https://doi.org/10.1021/jp2094824
  • Jiang, W., Chen, M., Yang, J., Deng, Z., Liu, Y., Bian, J., Du, S., & Hou, D. (2017). Dynamic experimental study of a new electrocoagulation apparatus with settlement scheme for the removal process in oilfield. Journal of Electroanalytical Chemistry, 801, 14–21. https://doi.org/10.1016/j.jelechem.2016.05.022
  • Kaur, G., Kaur, B., Garg, P., Chaudhary, G. R., Gawali, S. L., & Hassan, P. A. (2020). A study of synthesis, characterization and metalloplex formation ability of cetylpyridinium chloride based metallosomes. Journal of Molecular Liquids, 300, 112326. https://doi.org/10.1016/j.molliq.2019.112326
  • Kaymakçıoğlu, B. K., & Rollas, S. (2002). Synthesis, characterization and evaluation of antituberculosis activity of some hydrazones. Farmaco (Societa Chimica Italiana: 1989), 57(7), 595–599. https://doi.org/10.1016/S0014-827X(02)01255-7
  • Khanal, P., Patil, B. M., Chand, J., & Naaz, Y. (2020). Anthraquinone derivatives as an immune booster and their therapeutic option against COVID-19. Natural Products and Bioprospecting, 10(5), 325–335. https://doi.org/10.1007/s13659-020-00260-2
  • Kowalczyk, A., Nowicka, A. M., Jurczakowski, R., Niedzialkowski, P., Ossowski, T., & Stojek, Z. (2010). New anthraquinone derivatives as electrochemical redox indicators for the visualization of the DNA hybridization process. Electroanalysis, 22(1), 49–59. https://doi.org/10.1002/elan.200900389
  • Kumar, D. N. T., Liu, J., Dan, T., & Wei, Q. (2012). Suggestion of cyclic voltammetry based electrochemical DNA analysis of DNA petrol interaction novel approach in DNA damage analysis. IJERA J, 2, 1117–1123.
  • Kurbanoglu, S., Dogan-Topal, B., Rodriguez, E. P., Bozal-Palabiyik, B., Ozkan, S. A., & Uslu, B. (2016). Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals. Journal of Electroanalytical Chemistry, 775, 8–26. https://doi.org/10.1016/j.jelechem.2016.05.022
  • Li, X. L., Hu, Y. J., Wang, H., Yu, B. Q., & Yue, H. L. (2012). Molecular spectroscopy evidence of berberine binding to DNA: Comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3), 873–880. https://doi.org/10.1021/bm2017959
  • Maheswari, P. U., & Palaniandavar, M. (2004). DNA binding and cleavage properties of certain tetrammine ruthenium (II) complexes of modified 1, 10-phenanthrolines–effect of hydrogen-bonding on DNA-binding affinity. Journal of Inorganic Biochemistry, 98(2), 219–230. https://doi.org/10.1016/j.jinorgbio.2003.09.003
  • Mi, R., Bai, X. T., Tu, B., & Hu, Y. J. (2015). Unraveling the coptisine–ctDNA binding mechanism by multispectroscopic, electrochemical and molecular docking methods. RSC Advances, 5(59), 47367–47376. https://doi.org/10.1039/C5RA08790B
  • Mirzaei-Kalar, Z. (2018). In vitro binding interaction of atorvastatin with calf thymus DNA: Multispectroscopic, gel electrophoresis and molecular docking studies. Journal of Pharmaceutical and Biomedical Analysis, 161, 101–109. https://doi.org/10.1016/j.jpba.2018.08.033
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Neidle, S. (2001). DNA minor-groove recognition by small molecules. Natural Product Reports, 18(3), 291–309. https://doi.org/10.1039/A705982E
  • Ni, Y., Du, S., & Kokot, S. (2007). Interaction between quercetin–copper (II) complex and DNA with the use of the Neutral Red dye fluorophor probe. Analytica Chimica Acta, 584(1), 19–27. https://doi.org/10.1016/j.aca.2006.11.006
  • Olmsted, J., & Kearns, D. R. (1977). Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 16(16), 3647–3654. https://doi.org/10.1021/bi00635a022
  • Parveen, M., Ahmad, F., Malla, A. M., Khan, M. S., Rehman, S. U., Tabish, M., Silva, M. R., & Silva, P. S. P. (2016). Structure elucidation and DNA binding specificity of natural compounds from Cassia siamea leaves: A biophysical approach. Journal of Photochemistry and Photobiology. B, Biology, 159, 218–228. https://doi.org/10.1016/j.jphotobiol.2016.03.060
  • Qiao, C., Bi, S., Sun, Y., Song, D., Zhang, H., & Zhou, W. (2008). Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 70(1), 136–143. https://doi.org/10.1016/j.saa.2007.07.038
  • Rahman, Y., Afrin, S., Husain, M. A., Sarwar, T., Ali, A., Shamsuzzaman, & Tabish, M. (2017). Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Archives of Biochemistry and Biophysics, 625–626, 1–12. https://doi.org/10.1016/j.abb.2017.05.014
  • Reddy, B. P., Sondhi, S. M., & Lown, J. W. (1999). Synthetic DNA minor groove-binding drugs. Pharmacology & Therapeutics, 84(1), 1–111. https://doi.org/10.1016/S0163-7258(99)00021-2
  • Rehman, S. U., Yaseen, Z., Husain, M. A., Sarwar, T., Ishqi, H. M., & Tabish, M. (2014). Interaction of 6 mercaptopurine with calf thymus DNA–deciphering the binding mode and photoinduced DNA damage. PLoS One, 9(4), e93913. https://doi.org/10.1371/journal.pone.0093913
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Shahabadi, N., Fili, S. M., & Kheirdoosh, F. (2013). Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. Journal of Photochemistry and Photobiology. B, Biology, 128, 20–26. https://doi.org/10.1016/j.jphotobiol.2013.08.005
  • Shah, A., Nosheen, E., Munir, S., Badshah, A., Qureshi, R., Rehman, Zia-Ur., Muhammad, N., & Hussain, H. (2013). Characterization and DNA binding studies of unexplored imidazolidines by electronic absorption spectroscopy and cyclic voltammetry. Journal of Photochemistry and Photobiology. B, Biology, 120, 90–97. https://doi.org/10.1016/j.jphotobiol.2012.12.015
  • Shankaraiah, N., Jadala, C., Nekkanti, S., Senwar, K. R., Nagesh, N., Shrivastava, S., Naidu, V. G. M., Sathish, M., & Kamal, A. (2016). Design and synthesis of C3-tethered 1, 2, 3-triazolo-β-carboline derivatives: Anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorganic Chemistry, 64, 42–50. https://doi.org/10.1016/j.bioorg.2015.11.005
  • Shi, J. H., Liu, T. T., Jiang, M., Chen, J., & Wang, Q. (2015). Characterization of interaction of calf thymus DNA with gefitinib: Spectroscopic methods and molecular docking. Journal of Photochemistry and Photobiology. B, Biology, 147, 47–55. https://doi.org/10.1016/j.jphotobiol.2015.03.005
  • Shi, J. H., Lou, Y. Y., Zhou, K. L., & Pan, D. Q. (2018). Exploration of intermolecular interaction of calf thymus DNA with sulfosulfuron using multi-spectroscopic and molecular docking techniques. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 204, 209–216. https://doi.org/10.1016/j.saa.2018.06.054
  • Siddiqui, S., Ameen, F., Kausar, T., Nayeem, S. M., Rehman, S. U., & Tabish, M. (2021). Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 249, 119296. https://doi.org/10.1016/j.saa.2020.119296
  • Sohrabi, T., Hosseinzadeh, M., Beigoli, S., Saberi, M. R., & Chamani, J. (2018). Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. Journal of Molecular Liquids, 256, 127–138. https://doi.org/10.1016/j.molliq.2018.02.031
  • Stasevych, M., Zvarych, V., Barus, M., & Bratenko, M. (2021). Amino-and diamino-9, 10-anthracenedione derivatives: Biofocus and applied advantages - A mini-review. Biointerface Research in Applied Chemistry, 11(6), 14103–14114. https://doi.org/10.33263/BRIAC116.1410314114
  • Usman, A., & Ahmad, M. (2017). Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies. Chemosphere, 181, 536–543. https://doi.org/10.1016/j.chemosphere.2017.04.115
  • Wang, P., Zhou, Y., Ouyang, H., Wang, L., & Fu, Z. (2018). A protocol for studying the interaction between small-molecular drug and DNA using microdialysis sampling integrated with chemiluminescent detection. Journal of Pharmaceutical and Biomedical Analysis, 150, 294–299. https://doi.org/10.1016/j.jpba.2017.12.013
  • Yang, H., Tang, P., Tang, B., Huang, Y., He, J., Li, S., & Li, H. (2017). Studies of DNA-binding properties of lafutidine as adjuvant anticancer agent to calf thymus DNA using multi-spectroscopic approaches, NMR relaxation data, molecular docking and dynamical simulation. International Journal of Biological Macromolecules, 99, 79–87. https://doi.org/10.1016/j.ijbiomac.2017.02.062
  • Yang, H., & Wang, X. M. (2013). Spectroscopic studies on the interaction of β-cyclodextrin-8-Hydroxyquiuoline inclusion complex with herring sperm DNA. Journal of Molecular Structure, 1036, 51–55. https://doi.org/10.1016/j.molstruc.2012.09.044
  • Yaseen, Z., Banday, A. R., Hussain, M. A., Tabish., & M., Kabir-Ud-Din. (2014). Determination of the cationic amphiphilic drug–DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 122, 553–564., https://doi.org/10.1016/j.saa.2013.11.030
  • Zhang, G., Zhang, Y., Zhang, Y., & Li, Y. (2013). Spectroscopic studies of cyanazine binding to calf thymus DNA with the use of ethidium bromide as a probe. Sensors and Actuators B: Chemical, 182, 453–460. https://doi.org/10.1016/j.snb.2013.03.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.