185
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of hydrophobicity and size of the ligands on the intercalative binding interactions of some metallo-surfactants containing π-conjugated systems with yeast tRNA

, , , , , , , , , , , , , & show all
Pages 3949-3957 | Received 12 Feb 2023, Accepted 16 May 2023, Published online: 30 May 2023

References

  • Baguley, B. C., & Bret, M. L. (1984). Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: A possible electron-transfer effect. Biochemistry, 23(5), 937–943. https://doi.org/10.1021/bi00300a022
  • Barton, J. K. (1986). Metals and DNA: Molecular left-handed complements. Science (New York, N.Y.), 233(4765), 727–734.) https://doi.org/10.1126/science.3016894
  • Bhattacharya, S., & Dileep, P. V. (2004). Cationic oxyethylene lipids. Synthesis, aggregation, and transfection properties. Bioconjugate Chemistry, 15(3), 508–519. https://doi.org/10.1021/bc0340215
  • Bisceglie, F., Pinelli, S., Alinovi, R., Goldoni, M., Mutt, A., Camerini, A., Piola, L., Tarasconi, P., & Pelosi, G. (2014). Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: A study to understand their biological activity. Journal of Inorganic Biochemistry, 140, 111–125. https://doi.org/10.1016/j.jinorgbio.2014.07.014
  • Bowers, J., Amos, K. E., Bruce, D. W., & Webster, J. R. P. (2005). Surface and aggregation behavior of aqueous solutions of Ru(II) metallosurfactants. 3. Effect of chain number and orientation on the structure of adsorbed films of [Ru(bipy)2(bipy’)]Cl2 complexes. Langmuir: The ACS Journal of Surfaces and Colloids, 21(4), 1346–1353). https://doi.org/10.1021/la0478705
  • Carter, M. T., & Bard, A. J. (1987). Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA. Journal of the American Chemical Society, 109(24), 7528–7530.) https://doi.org/10.1021/ja00258a046
  • Carter, M. T., Rodriguez, M., & Bard, A. J. (1989). Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine. Journal of the American Chemical Society, 111(24), 8901–8911. https://doi.org/10.1021/ja00199a004
  • Carvlin, M. J., Gupta, N. R. D., & Fiel, J. (1982). Circular dichroism spectroscopy of a cationic porphyrin bound to DNA. Biochemical and Biophysical Research Communications, 108(1), 66–73. https://doi.org/10.1016/0006-291x(82)91832-0
  • Cheong, H. K., Hwang, E., Lee, C., Choi, B. S., & Cheong, C. (2004). Rapid preparation of RNA samples for NMR spectroscopy and X-ray crystallography. Nucleic Acids Research, 32(10), e84–e84. https://doi.org/10.1093/nar/gnh081
  • Cohen, G., & Eisenberg, H. (1969). Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers, 8(1), 45–55.) https://doi.org/10.1002/bip.1969.360080105
  • Foloppe, N., Matassova, N., & Aboul, E. F. (2006). Towards the discovery of drug-like RNA ligands? Drug Discovery Today, 11(21-22), 1019–1027. https://doi.org/10.1016/j.drudis.2006.09.001
  • Gallego, J., & Varani, G. (2001). Targeting RNA with small-molecule drugs: Therapeutic promise and chemical challenges. Accounts of Chemical Research, 34(10), 836–843. https://doi.org/10.1021/ar000118k
  • Gravina, A., Pasini, A., Pinciroli, F., Micheloni, A., & Zunino, F. (1989). Synthesis and evaluation of biological activity of binuclear cisplatin analogues with polyoxypropylene-α,ω-diamines as the bridging groups. Inorganica Chimica Acta, 157(2), 165–166. https://doi.org/10.1016/S0020-1693(00)80536-8
  • Haifz, A. A. (2005). Metallosurfactants of Cu(II) and Fe(III) complexes as catalysts for the destruction of paraoxon. J. Surfact. Deterg, 8, 359–363.
  • Hermann, T., & Westhof, E. (1998). RNA as a drug target: Chemical, modeling, and evolutionary tools. Current Opinion in Biotechnology, 9(1), 66–73. https://doi.org/10.1016/S0958-1669(98)80086-4
  • J. Q., Xie, B., Xu, B., Xie, H., Wei, X. C., & Zeng, J. (2006). Oxidation reaction of phenol with H2O2 catalyzed by metallomicelles made of Co(II) and Cu(II) complexes of imidazole groups and micelle as mimic peroxidase. Journal of Dispersion Science and Technology, 27(4), 481–487. https://doi.org/10.1080/01932690500374227
  • Jennette, K. W., Lippard, S. J., Vassiliades, G. A., & Bauer, W. R. (1974). Metallointercalation reagents. 2-hydroxyethanethiolato(2,2',2'-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. Proceedings of the National Academy of Sciences of the United States of America, 71(10), 3839–3843.) https://doi.org/10.1073/pnas.71.10.3839
  • Jiao, K., Wang, Q., Sun, W., & Jian, F. (2005). Synthesis, characterization and DNA-binding properties of a new cobalt(II) complex: Co(bbt)2Cl2. Journal of Inorganic Biochemistry. 99(6), 1369–1375. https://doi.org/10.1016/j.jinorgbio.2005.03.017
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 12(21), 4161–4170. https://doi.org/10.1021/bi00745a020
  • Liang, X., Zou, X., Tan, L., & Zhu, W. (2010). Study on nucleic acid (CT-DNA and yeast tRNA) binding behaviors and cytotoxic properties of a heterodinuclear Ru(II)-Co(III) polypyridyl complex. Journal of Inorganic Biochemistry, 104(12), 1259–1266. https://doi.org/10.1016/j.jinorgbio.2010.08.006
  • Maheswari, P. U., & Palaniandavar, M. (2004). DNA binding and cleavage properties of certain tetrammine ruthenium(II) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affinity. Journal of Inorganic Biochemistry, 98(2), 219–230. https://doi.org/10.1016/j.jinorgbio.2003.09.003
  • Musselman, C. S., Pitt, W., Gulati, K., Foster, L. L., Andricioaei, I., & Al-Hashimi, H. M. (2006). Impact of static and dynamic A-form heterogeneity on the determination of RNA global structural dynamics using NMR residual dipolar couplings. Journal of Biomolecular NMR, 36(4), 235–249. https://doi.org/10.1007/s10858-006-9087-9
  • Nagaraj, K., & Arunachalam, S. (2014a). Synthesis, Micellization Behavior and Binding analysis of Surfactant–Copper(II) Complex Containing dipyrido[3,2-d:2’-3’-f]quinoxaline with nucleic acid and its Antimicrobial and Antifungal Activity. Journal of Biomolecular Structure and Dynamics, 57, 735–442.
  • Nagaraj, K., & Arunachalam, S. (2014b). Synthesis, CMC determination, nucleic acid binding and cytotoxicity of a surfactant–cobalt (iii) complex: Effect of ionic liquid additive. New Journal of Chemistry, 38(1), 366–375. https://doi.org/10.1039/C3NJ00832K
  • Nagaraj, K., Murugan, K. S., Thangamuniyandi, P., & Sakthinathan, S. (2014). Nucleic acid binding study of surfactant copper(ii) complex containing dipyrido[3,2-a:2′-3′-c]phenazine ligand as an intercalator: In vitro antitumor activity of complex in human liver carcinoma (HepG2) cancer cells. RSC Advances, 4(99), 56084–56094. https://doi.org/10.1039/C4RA07404A
  • Nagaraj, K., Sakthinathan, S., & Arunachalam, S. (2015). Biophysical insights into the intercalative interaction of surfactant cobalt(III) complexes of certain diimine ligands bound to yeast tRNA: Effects of hydrophobicity. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 147, 93–98. https://doi.org/10.1016/j.saa.2015.03.042
  • Nagaraj, K., Sakthinathan, S., Ambika, S., Rajasri, S., & Arunachalam, S. (2014). Synthesis, micellization behavior, antimicrobial and intercalative DNA binding of some novel surfactant copper(II) complexes containing modified phenanthroline ligands. Colloids and Surfaces B: Biointerfaces, 122, 151–157. https://doi.org/10.1016/j.colsurfb.2014.05.011
  • Nagaraj, K., Velmurugan, G., Sakthinathan, S., Venuvanalingam, P., & Arunachalam, S. (2014). Influence of self-assembly on intercalative DNA binding interaction of double-chain surfactant Co(iii) complexes containing imidazo[4,5-f][1,10]phenanthroline and dipyrido[3,2-d:2′-3′-f]quinoxaline ligands: Experimental and theoretical study. Dalton Transaction, 43(48), 18074–18086. https://doi.org/10.1039/C4DT02134G
  • Ni, Y., Li, D., & Kokot, S. (2006). Synchronous fluorescence, UV-visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline)copper(II) complex and neutral red with DNA. Analytical Biochemistry, 352(2), 231–242. https://doi.org/10.1016/j.ab.2006.02.031
  • Onfelt, B., Lincoln, P., & Norden, B. (2001). Enantioselective DNA threading dynamics by phenazine-linked. Journal of the American Chemical Society, 123(16), 3630–3637. https://doi.org/10.1021/ja003624d
  • Qingxiang, W., Wenqu, L., Feng, G., Shunxing, L., Jiancong, N., & Zhouyan, Z. (2010). Comprehensive studies on the DNA-binding and cleavage properties of a nickel complex derived from phthalate and 1,10-phenanthroline. Polyhedron, 29, 539–543.
  • Saiz, M. F., Werner, F., Davis, T. M., Schneider, H. J., & Wilson, W. D. (2002). Studies on the unique RNA duplex destabilization by an azoniacyclophane – NMR titrations with mono- and oligonucleotides of the RNA and DNA types. European Journal of Organic Chemistry, 2002(6), 1077–1084.) https://doi.org/10.1002/1099-0690(200203)2002:6<1077::AID-EJOC1077>3.0.CO;2-X
  • Satyanarayana, S., Dabrowiak, J. C., & Chaires, J. B. (1992). Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry, 31(39), 9319–9324. https://doi.org/10.1021/bi00154a001
  • Satyanarayana, S., Dabrowiak, J. C., & Chaires, J. B. (1993). Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemisty, 32(10), 2573–2584. https://doi.org/10.1021/bi00061a015
  • Tabassum, S., Parveen, S., & Arjmand, F. (2005). New modulated metallic macrocycles: Electrochemistry and their interaction with calf thymus DNA. Acta Biomaterialia, 1(6), 677–689. https://doi.org/10.1016/j.actbio.2005.07.002
  • Tamil Selvi, P., & Palaniandavar, M. (2002). Spectral, viscometric and electrochemical studies on mixed ligand cobalt(III) complexes of certain diimine ligands bound to calf thymus DNA. Inorganica Chimica Acta 337, 420–428. https://doi.org/10.1016/S0020-1693(02)01112-X
  • Thomas, J. R., & Hergenrother, P. J. (2008). Targeting RNA with small molecules. Chemical Reviews, 108(4), 1171–1224. https://doi.org/10.1021/cr0681546
  • Trewavas, A. (1967). A new method for counting labeled nucleic acids by liquid scintillation. Analytical Biochemistry, 21(2), 324–329. https://doi.org/10.1016/0003-2697(67)90198-4
  • Watson, R. T., Desai, N., Wildsmith, J., Wheeler, J. F., Kane., & Magurie, N. A. P. (1999). Interaction of Cr(diimine)33+ Complexes with DNA. Inorganic Chemistry, 38, 2683–2687.
  • Xavier, K., Eder, P. S., & Giordano, T. (2000). RNA as a drug target: Methods for biophysical characterization and screening. Trends in Biotechnology 18(8), 349–356. https://doi.org/10.1016/S0167-7799(00)01464-5
  • Y. M., Song, Q., Wu, P. J., Yang, N. N., Luan, L. F., Wang, Y. M., & Liu, J. (2006). DNA Binding and cleavage activity of Ni(II) complex with all-trans retinoic acid. Journal of Inorganic Biochemistry, 100(10), 1685–1691. https://doi.org/10.1016/j.jinorgbio.2006.06.001
  • YanZi, M., HongJu, U., & Ke-Zhi, W. (2009). A β-d-Allopyranoside-Grafted Ru(II) Complex: Synthesis and Acid−Base and DNA-Binding Properties. The Journal of Physical Chemistry B, 113, 11039–11047.
  • Zehra, S., Roisnel, T., & Arjmand, F. (2019). Enantiomeric amino acid schiff base copper(II) complexes as a new class of RNA-targeted metallo-intercalators: Single X-ray crystal structural details, comparative in vitro DNA/RNA binding profile, cleavage, and cytotoxicity. ACS Omega, 4(4), 7691–7705. https://doi.org/10.1021/acsomega.9b00131
  • Zhao, G., Lin, H., Zhu, S., Sun, H., & Chen, Y. (1998). Dinuclear palladium(II) complexes containing two monofunctional [Pd(en)(pyridine)Cl]+ units bridged by Se or S. Synthesis, characterization, cytotoxicity and kinetic studies of DNA-binding. Journal of Inorganic Biochemistry, 70(3-4), 219–226. https://doi.org/10.1016/s0162-0134(98)10019-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.