203
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structure-guided identification of potent inhibitors of ROS1 kinase for therapeutic development against non-small cell lung cancer

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 3837-3847 | Received 02 Apr 2023, Accepted 12 May 2023, Published online: 30 May 2023

References

  • Acquaviva, J., Wong, R., & Charest, A. (2009). The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochimica et Biophysica Acta, 1795(1), 37–52. https://doi.org/10.1016/j.bbcan.2008.07.006
  • Ali, S., Khan, F. I., Mohammad, T., Lan, D., Hassan, M., & Wang, Y. (2019). Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies. International Journal of Molecular Sciences, 20(4), 884. https://doi.org/10.3390/ijms20040884
  • Anjum, F., Mohammad, T., Almalki, A. A., Akhtar, O., Abdullaev, B., & Hassan, M. I. (2021). Phytoconstituents and Medicinal plants for anticancer drug discovery: Computational identification of potent inhibitors of PIM1 kinase. Omics: A Journal of Integrative Biology, 25(9), 580–590. https://doi.org/10.1089/omi.2021.0107
  • Arnaoutakis, K. (2015). Crizotinib in ROS1-rearranged non-small-cell lung cancer. The New England Journal of Medicine, 372(7), 683. https://doi.org/10.1056/NEJMc1415359
  • Awad, M. M., Katayama, R., McTigue, M., Liu, W., Deng, Y.-L., Brooun, A., Friboulet, L., Huang, D., Falk, M. D., Timofeevski, S., Wilner, K. D., Lockerman, E. L., Khan, T. M., Mahmood, S., Gainor, J. F., Digumarthy, S. R., Stone, J. R., Mino-Kenudson, M., Christensen, J. G., … Shaw, A. T. (2013). Acquired resistance to crizotinib from a mutation in CD74–ROS1. The New England Journal of Medicine, 368(25), 2395–2401. https://doi.org/10.1056/NEJMoa1215530
  • Baell, J. B. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of Natural Products, 79(3), 616–628. https://doi.org/10.1021/acs.jnatprod.5b00947
  • Batool, M., Ahmad, B., & Choi, S. (2019). A structure-based drug discovery paradigm. International Journal of Molecular Sciences, 20(11), 2783. https://doi.org/10.3390/ijms20112783
  • Bhullar, K. S., Lagarón, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P., & Rupasinghe, H. (2018). Kinase-targeted cancer therapies: Progress, challenges and future directions. Molecular Cancer, 17(1), 1–20. https://doi.org/10.1186/s12943-018-0804-2
  • Charest, A., Wilker, E. W., McLaughlin, M. E., Lane, K., Gowda, R., Coven, S., McMahon, K., Kovach, S., Feng, Y., Yaffe, M. B., Jacks, T., & Housman, D. (2006). ROS fusion tyrosine kinase activates a SH2 domain–containing phosphatase-2/phosphatidylinositol 3-Kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Research, 66(15), 7473–7481. https://doi.org/10.1158/0008-5472.CAN-06-1193
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Dancey, J., & Sausville, E. A. (2003). Issues and progress with protein kinase inhibitors for cancer treatment. Nature Reviews. Drug Discovery, 2(4), 296–313. https://doi.org/10.1038/nrd1066
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Protein dynamics (pp. 193–226). Springer.
  • Davies, K. D., Mahale, S., Astling, D. P., Aisner, D. L., Le, A. T., Hinz, T. K., Vaishnavi, A., Bunn, P. A., Heasley, L. E., Tan, A.-C., Camidge, D. R., Varella-Garcia, M., & Doebele, R. C. (2013). Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PloS One, 8(12), e82236. https://doi.org/10.1371/journal.pone.0082236
  • DeLano, W. L. (2002). PyMOL.
  • Drilon, A., Jenkins, C., Iyer, S., Schoenfeld, A., Keddy, C., & Davare, M. A. (2021). ROS1-dependent cancers—biology, diagnostics and therapeutics. Nature Reviews. Clinical Oncology, 18(1), 35–55. https://doi.org/10.1038/s41571-020-0408-9
  • Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Gagic, Z., Ruzic, D., Djokovic, N., Djikic, T., & Nikolic, K. (2019). In silico methods for design of kinase inhibitors as anticancer drugs. Frontiers in Chemistry, 7, 873. https://doi.org/10.3389/fchem.2019.00873
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Jänne, P. A., Gray, N., & Settleman, J. (2009). Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nature Reviews. Drug Discovery, 8(9), 709–723. https://doi.org/10.1038/nrd2871
  • Jänne, P. A., & Meyerson, M. (2012). ROS1 rearrangements in lung cancer: A new genomic subset of lung adenocarcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(8), 878–879. https://doi.org/10.1200/JCO.2011.39.4197
  • Jun, H. J., Johnson, H., Bronson, R. T., de Feraudy, S., White, F., & Charest, A. (2012). The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Research, 72(15), 3764–3774. https://doi.org/10.1158/0008-5472.CAN-11-3990
  • Jun, H. J., Roy, J., Smith, T. B., Wood, L. B., Lane, K., Woolfenden, S., Punko, D., Bronson, R. T., Haigis, K. M., Breton, S., & Charest, A. (2014). ROS1 signaling regulates epithelial differentiation in the epididymis. Endocrinology, 155(9), 3661–3673. https://doi.org/10.1210/en.2014-1341
  • Khan, A., Mohammad, T., Shamsi, A., Hussain, A., Alajmi, M. F., Husain, S. A., Iqbal, M. A., & Hassan, M. I. (2022). Identification of plant-based hexokinase 2 inhibitors: Combined molecular docking and dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 40(20), 10319–10331. https://doi.org/10.1080/07391102.2021.1942217
  • Kumar-Sinha, C., Kalyana-Sundaram, S., & Chinnaiyan, A. M. (2015). Landscape of gene fusions in epithelial cancers: Seq and ye shall find. Genome Medicine, 7(1), 1–18. https://doi.org/10.1186/s13073-015-0252-1
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lee, K.-H., Lee, K.-B., Kim, T.-Y., Han, S.-W., Oh, D.-Y., Im, S.-A., Kim, T.-Y., Yi, N.-J., Lee, K.-W., Suh, K.-S., Jang, J.-J., & Bang, Y.-J. (2015). Clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma. BMC Cancer, 15(1), 1–9. https://doi.org/10.1186/s12885-015-1737-4
  • Lee, H. J., Seol, H. S., Kim, J. Y., Chun, S. M., Suh, Y. A., Park, Y. S., Kim, S. W., Choi, C. M., Park, S. I., Kim, D. K., Kim, Y. H., & Jang, S. J. (2013). ROS1 receptor tyrosine kinase, a druggable target, is frequently overexpressed in non-small cell lung carcinomas via genetic and epigenetic mechanisms. Annals of Surgical Oncology, 20(1), 200–208. https://doi.org/10.1245/s10434-012-2553-6
  • Lin, J. J., & Shaw, A. T. (2017). Recent advances in targeting ROS1 in lung cancer. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 12(11), 1611–1625. https://doi.org/10.1016/j.jtho.2017.08.002
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Marsh, J. A., & Teichmann, S. A. (2011). Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure (London, England: 1993), 19(6), 859–867. https://doi.org/10.1016/j.str.2011.03.010
  • Mobley, D. L., & Dill, K. A. (2009). Binding of small-molecule ligands to proteins:“what you see” is not always “what you get. Structure (London, England: 1993), 17(4), 489–498. https://doi.org/10.1016/j.str.2009.02.010
  • Mohammad, T., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). Journal of Biomolecular Structure & Dynamics, 37(7), 1813–1829. https://doi.org/10.1080/07391102.2018.1468282
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics, 22(4), bbaa279. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Shamsi, A., Anwar, S., Umair, M., Hussain, A., Rehman, M. T., AlAjmi, M. F., Islam, A., & Hassan, M. I. (2020). Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Research, 288, 198102. https://doi.org/10.1016/j.virusres.2020.198102
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand‐receptor docking. Current Protocols in Bioinformatics, 24(1). https://doi.org/10.1002/0471250953.bi0814s24
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R., Chand, R., Aparna, S., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 1–17. https://doi.org/10.1038/s41598-018-22631-z
  • Nagarajan, L., Louie, E., Tsujimoto, Y., Balduzzi, P. C., Huebner, K., & Croce, C. M. (1986). The human c-ros gene (ROS) is located at chromosome region 6q16––6q22. Proceedings of the National Academy of Sciences of the United States of America, 83(17), 6568–6572. https://doi.org/10.1073/pnas.83.17.6568
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Ou, S.-H. I., Tan, J., Yen, Y., & Soo, R. A. (2012). ROS1 as a ‘druggable’receptor tyrosine kinase: Lessons learned from inhibiting the ALK pathway. Expert Review of Anticancer Therapy, 12(4), 447–456. https://doi.org/10.1586/era.12.17
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Patil, T., Simons, E., Mushtaq, R., Pacheco, J. M., Doebele, R. C., & Bowles, D. W. (2019). Targeted therapies for ROS1-rearranged non-small cell lung cancer. Drugs of Today (Barcelona, Spain: 1998), 55(10), 641–652. https://doi.org/10.1358/dot.2019.55.10.3030646
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Reinke, R., & Zipursky, S. L. (1988). Cell-cell interaction in the Drosophila retina: The bride of sevenless gene is required in photoreceptor cell R8 for R7 cell development. Cell, 55(2), 321–330. https://doi.org/10.1016/0092-8674(88)90055-4
  • Richmond, T. J. (1984). Solvent accessible surface area and excluded volume in proteins: Analytical equations for overlapping spheres and implications for the hydrophobic effect. Journal of Molecular Biology, 178(1), 63–89. https://doi.org/10.1016/0022-2836(84)90231-6
  • Rose, G. D., & Wolfenden, R. (1993). Hydrogen bonding, hydrophobicity, packing, and protein folding. Annual Review of Biophysics and Biomolecular Structure, 22, 381–415. https://doi.org/10.1146/annurev.bb.22.060193.002121
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal: EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Shamsi, S., Anjum, H., Shahbaaz, M., Khan, M. S., Ataya, F. S., Alamri, A., Alhumaydhi, F. A., Husain, F. M., Rehman, M. T., Mohammad, T., Islam, A., Anjum, F., & Shamsi, A. (2022). A computational study on active constituents of Habb-ul-aas and Tabasheer as inhibitors of SARS-CoV-2 main protease. Journal of Biomolecular Structure & Dynamics, 40(17), 7702–7713. https://doi.org/10.1080/07391102.2021.1900920
  • Shyamsundar, R., Kim, Y. H., Higgins, J. P., Montgomery, K., Jorden, M., Sethuraman, A., van de Rijn, M., Botstein, D., Brown, P. O., & Pollack, J. R. (2005). A DNA microarray survey of gene expression in normal human tissues. Genome Biology, 6(9), 404. https://doi.org/10.1186/gb-2005-6-9-404
  • Studio, D. (2008). Discovery Studio. Accelrys [2.1].
  • Takeuchi, K., Soda, M., Togashi, Y., Suzuki, R., Sakata, S., Hatano, S., Asaka, R., Hamanaka, W., Ninomiya, H., Uehara, H., Lim Choi, Y., Satoh, Y., Okumura, S., Nakagawa, K., Mano, H., & Ishikawa, Y. (2012). RET, ROS1 and ALK fusions in lung cancer. Nature Medicine, 18(3), 378–381. https://doi.org/10.1038/nm.2658
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Warth, A., Muley, T., Dienemann, H., Goeppert, B., Stenzinger, A., Schnabel, P. A., Schirmacher, P., Penzel, R., & Weichert, W. (2014). ROS 1 expression and translocations in non‐small‐cell lung cancer: Clinicopathological analysis of 1478 cases. Histopathology, 65(2), 187–194. https://doi.org/10.1111/his.12379
  • Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics, 124(2), 024503. https://doi.org/10.1063/1.2136877
  • Xue, B., Chaddha, M., Elasbali, A. M., Zhu, Z., Jairajpuri, D. S., Alhumaydhi, F. A., Mohammad, T., Abdulmonem, W. A., Sharaf, S. E., & Hassan, M. I. (2022). Death-associated protein kinase 3 inhibitors identified by virtual screening for drug discovery in cancer and hypertension. OMICS: A Journal of Integrative Biology, 26(7), 404–413. https://doi.org/10.1089/omi.2022.0044
  • Zeng, L., Sachdev, P., Yan, L., Chan, J. L., Trenkle, T., McClelland, M., Welsh, J., & Wang, L.-H. (2000). Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Molecular and Cellular Biology, 20(24), 9212–9224. https://doi.org/10.1128/MCB.20.24.9212-9224.2000
  • Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews. Cancer, 9(1), 28–39. https://doi.org/10.1038/nrc2559
  • Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., & Yang, S. (2021). Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6(1), 48. https://doi.org/10.1038/s41392-021-00572-w
  • Zou, H. Y., Li, Q., Engstrom, L. D., West, M., Appleman, V., Wong, K. A., McTigue, M., Deng, Y.-L., Liu, W., Brooun, A., Timofeevski, S., McDonnell, S. R. P., Jiang, P., Falk, M. D., Lappin, P. B., Affolter, T., Nichols, T., Hu, W., Lam, J., … Fantin, V. R. (2015). PF-06463922 is a potent and selective next-generation ROS1/ALK inhibitor capable of blocking crizotinib-resistant ROS1 mutations. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3493–3498. https://doi.org/10.1073/pnas.1420785112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.