298
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro)

, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 3983-4001 | Received 04 Jan 2023, Accepted 18 May 2023, Published online: 26 May 2023

References

  • Abraham, L., Hess, B., & Spoel, V. (2020). GROMACS 2020.3 source code. Zenodo
  • Andersen, R. J., Faulkner, D. J., He, C. H., Van Duyne, G. D., & Clardy, J. (1985). Metabolites of the marine prosobranch mollusk Lamellaria sp. Journal of the American Chemical Society, 107(19), 5492–5495. https://doi.org/10.1021/ja00305a027
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., Orhan, I. E., Banach, M., Rollinger, J. M., Barreca, D., Weckwerth, W., Bauer, R., Bayer, E. A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G. K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., … Bodkin, M., the International Natural Product Sciences Taskforce. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
  • Avila-Perez, G., Nogales, A., Martin, V., Almazan, F., & Martinez-Sobrido, L. (2018). Reverse genetic approaches for the generation of recombinant Zika virus. Viruses, 10(11), 597. https://doi.org/10.3390/v10110597
  • Bailly, C. (2004a). Lamellarins, from A to Z: a family of anticancer marine pyrrole alkaloids. Current Medicinal Chemistry. Anti-Cancer Agents, 4(4), 363–378. https://doi.org/10.2174/1568011043352939
  • Bailly, C. (2004b). Lamellarins, from A to Z: A family of anticancer marine pyrrole alkaloids. Current Medicinal Chemistry. Anti-Cancer Agents, 4(4), 363–378. https://doi.org/10.2174/1568011043352939
  • Bailly, C. (2014). Lamellarins: A tribe of bioactive marine natural products. Outstanding Marine Molecules, 377–386.
  • Bailly, C. (2015). Anticancer properties of lamellarins. Marine Drugs, 13(3), 1105–1123. https://doi.org/10.3390/md13031105
  • Ballot, C., Kluza, J., Lancel, S., Martoriati, A., Hassoun, S. M., Mortier, L., Vienne, J.-C., Briand, G., Formstecher, P., Bailly, C., Nevière, R., & Marchetti, P. (2010). Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis : An International Journal on Programmed Cell Death, 15(7), 769–781. https://doi.org/10.1007/s10495-010-0471-2
  • Baunbaek, D., Trinkler, N., Ferandin, Y., Lozach, O., Ploypradith, P., Rucirawat, S., Ishibashi, F., Iwao, M., & Meijer, L. (2008). Anticancer alkaloid lamellarins inhibit protein kinases. Marine Drugs, 6(4), 514–527. https://www.mdpi.com/1660-3397/6/4/514 https://doi.org/10.3390/md20080026
  • Bayet-Robert, M., Lim, S., Barthomeuf, C., & Morvan, D. (2010). Biochemical disorders induced by cytotoxic marine natural products in breast cancer cells as revealed by proton NMR spectroscopy-based metabolomics. Biochemical Pharmacology, 80(8), 1170–1179. https://doi.org/10.1016/j.bcp.2010.07.007
  • Becke, A. D. (1993a). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Becke, A. D. (1993b). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Begum, S., & Hemalatha, S. (2022). Marine natural products—A vital source of novel biotherapeutics. Current Pharmacology Reports, 8(5), 339–349. https://doi.org/10.1007/s40495-022-00295-8
  • Cannalire, R., Cerchia, C., Beccari, A. R., Di Leva, F. S., & Summa, V. (2022). Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: State of the art and future opportunities. Journal of Medicinal Chemistry, 65(4), 2716–2746. https://doi.org/10.1021/acs.jmedchem.0c01140
  • Capuzzi, S. J., Muratov, E. N., & Tropsha, A. (2017). Phantom PAINS: Problems with the utility of alerts for pan-assay interference compound S. Journal of Chemical Information and Modeling, 57(3), 417–427. https://doi.org/10.1021/acs.jcim.6b00465
  • Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2022). Marine natural products. Natural Product Reports, 39(6), 1122–1171. https://doi.org/10.1039/D1NP00076D
  • Cheong, E. Z. K., Quek, J. P., Xin, L., Li, C., Chan, J. Y., Liew, C. W., Mu, Y., Zheng, J., & Luo, D. (2022). Crystal structure of the Rubella virus protease reveals a unique papain-like protease fold. The Journal of Biological Chemistry, 298(8), 102250. https://doi.org/10.1016/j.jbc.2022.102250
  • Chopra, B., & Dhingra, A. K. (2021). Natural products: A lead for drug discovery and development. Phytotherapy Research : PTR, 35(9), 4660–4702. https://doi.org/10.1002/ptr.7099
  • Cironi, P., Albericio, F., & Álvarez, M. (2005). Chapter 1 lamellarins: Isolation, activity and synthesis. In G. W. Gribble & J. A. Joule (Eds.), Progress in heterocyclic chemistry (Vol. 16, pp. 1–26). Elsevier. https://doi.org/10.1016/S0959-6380(05)80043-1
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Deng, Y., Liu, Y., Li, J., Wang, X., He, S., Yan, X., Shi, Y., Zhang, W., & Ding, L. (2022). Marine natural products and their synthetic analogs as promising antibiofilm agents for antibiotics discovery and development. European Journal of Medicinal Chemistry, 239, 114513. https://doi.org/10.1016/j.ejmech.2022.114513
  • Dzobo, K. (2022). The role of natural products as sources of therapeutic agents for innovative drug discovery. Comprehensive Pharmacology, 2, 408–422. https://doi.org/10.1016/B978-0-12-820472-6.00041-4
  • El-Demerdash, A., Ermolenko, L., Gros, E., Retailleau, P., Thanh, B. N., Gauvin-Bialecki, A., & Al-Mourabit, A. (2020). Short-cut bio-inspired synthesis of tricyclic guanidinic motifs of crambescidins and batzelladines marine alkaloids. European Journal of Organic Chemistry, 2020(35), 5677–5684. https://doi.org/10.1002/ejoc.202000744
  • El-Demerdash, A., Genta-Jouve, G., Bärenstrauch, M., Kunz, C., Baudouin, E., & Prado, S. (2019). Highly oxygenated isoprenylated cyclohexanoids from the fungus Parastagonospora nodorum SN15. Phytochemistry, 166, 112056. https://doi.org/10.1016/j.phytochem.2019.112056
  • El-Demerdash, A., Hassan, A., Abd El-Aziz, T. M., Stockand, J. D., & Arafa, R. K. (2021). Marine brominated tyrosine alkaloids as promising inhibitors of SARS-CoV-2. Molecules, 26(20), 6171. https://www.mdpi.com/1420-3049/26/20/6171 https://doi.org/10.3390/molecules26206171
  • Elgohary, A. M., Elfiky, A. A., Pereira, F., Abd El-Aziz, T. M., Sobeh, M., Arafa, R. K., & El-Demerdash, A. (2022). Investigating the structure-activity relationship of marine polycyclic batzelladine alkaloids as promising inhibitors for SARS-CoV-2 main protease (Mpro). Computers in Biology and Medicine, 147, 105738. https://doi.org/10.1016/j.compbiomed.2022.105738
  • Eurtivong, C., Choowongkomon, K., Ploypradith, P., & Ruchirawat, S. (2019). Molecular docking study of lamellarin analogues and identification of potential inhibitors of HIV-1 integrase strand transfer complex by virtual screening. Heliyon, 5(11), e02811. https://doi.org/10.1016/j.heliyon.2019.e02811
  • Faisal, S., Badshah, S. L., Kubra, B., Emwas, A.-H., & Jaremko, M. (2023). Alkaloids as potential antivirals. A comprehensive review. Natural Products and Bioprospecting, 13(1), 4. https://doi.org/10.1007/s13659-022-00366-9
  • Fan, H., Peng, J., Hamann, M. T., & Hu, J.-F. (2008). Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chemical Reviews, 108(1), 264–287. https://doi.org/10.1021/cr078199m
  • Ferguson, N. M., Cucunuba, Z. M., Dorigatti, I., Nedjati-Gilani, G. L., Donnelly, C. A., Basanez, M. G., Nouvellet, P., & Lessler, J. (2016). EPIDEMIOLOGY. Countering the Zika epidemic in Latin America. Science (New York, N.Y.), 353(6297), 353–354. https://doi.org/10.1126/science.aag0219
  • Frisch, M., Trucks, G., & Schlegel, H. (2010). Gaussian 09, revision B. 01 and revision D. 01. Gaussian.
  • Fukuda, T., Ishibashi, F., & Iwao, M. (2020). Lamellarin alkaloids: Isolation, synthesis, and biological activity. The Alkaloids. Chemistry and Biology, 83, 1–112. https://doi.org/10.1016/bs.alkal.2019.10.001
  • Ghareeb, M. A., Tammam, M. A., El-Demerdash, A., & Atanasov, A. G. (2020). Insights about clinically approved and preclinically investigated marine natural products. Current Research in Biotechnology, 2, 88–102. https://doi.org/10.1016/j.crbiot.2020.09.001
  • Günther, S., Reinke, P. Y. A., Fernández-García, Y., Lieske, J., Lane, T. J., Ginn, H. M., Koua, F. H. M., Ehrt, C., Ewert, W., Oberthuer, D., Yefanov, O., Meier, S., Lorenzen, K., Krichel, B., Kopicki, J.-D., Gelisio, L., Brehm, W., Dunkel, I., Seychell, B., … Meents, A. (2021). X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science (New York, N.Y.), 372(6542), 642–646. https://doi.org/10.1126/science.abf7945
  • Gupta, S. P. (2017). Viral proteases and their inhibitors. Elsevier/Academic Press.
  • Hasan, S., Jamdar, S. F., Alalowi, M. A., & Beaiji, S. M. A. (2016). Dengue virus: A global human threat: Review of literature. Journal of International Society of Preventive & Community Dentistry, 6(1), 1–6. https://doi.org/10.4103/2231-0762.175416
  • Helmy, Y. A., Fawzy, M., Elaswad, A., Sobieh, A., Kenney, S. P., & Shehata, A. A. (2020). The COVID-19 pandemic: A comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. Journal of Clinical Medicine, 9(4), 1225. https://doi.org/10.3390/jcm9041225
  • Ho, J. S. Y., Zhu, Z. Y., & Marazzi, I. (2021). Unconventional viral gene expression mechanisms as therapeutic targets. Nature, 593(7859), 362–371. https://doi.org/10.1038/s41586-021-03511-5
  • Huang, X.-C., Xiao, X., Zhang, Y.-K., Talele, T. T., Salim, A. A., Chen, Z.-S., & Capon, R. J. (2014). Lamellarin O, a pyrrole alkaloid from an Australian marine sponge, Ianthella sp., reverses BCRP mediated drug resistance in cancer cells. Marine Drugs, 12(7), 3818–3837. https://www.mdpi.com/1660-3397/12/7/3818 https://doi.org/10.3390/md12073818
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hung, S. J., & Huang, S. W. (2021). Contributions of genetic evolution to Zika virus emergence. Frontiers in Microbiology, 12, 655065. https://doi.org/10.3389/fmicb.2021.655065
  • Hwu, J. R., Roy, A., Panja, A., Huang, W.-C., Hu, Y.-C., Tan, K.-T., Lin, C.-C., Hwang, K.-C., Hsu, M.-H., & Tsay, S.-C. (2020). Domino reaction for the synthesis of polysubstituted pyrroles and lamellarin R. The Journal of Organic Chemistry, 85(15), 9835–9843. https://doi.org/10.1021/acs.joc.0c01134
  • Imperatore, C., Aiello, A., D'Aniello, F., Senese, M., & Menna, M. (2014). Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development. Molecules (Basel, Switzerland), 19(12), 20391–20423. https://doi.org/10.3390/molecules191220391
  • Ishibashi, F., Tanabe, S., Oda, T., & Iwao, M. (2002). Synthesis and structure-activity relationship study of lamellarin derivatives. Journal of Natural Products, 65(4), 500–504. https://doi.org/10.1021/np0104525
  • Jhang, J. W., Manjappa, K. B., & Yang, D. Y. (2022). Synthesis of naphthoquinone‐and pyrrolo [2, 1‐a] isoquinoline‐fused heterocycles and tridemethoxy lamellarin D. Asian Journal of Organic Chemistry, 11(1), e202100660. https://doi.org/10.1002/ajoc.202100660
  • Kamiyama, H., Kubo, Y., Sato, H., Yamamoto, N., Fukuda, T., Ishibashi, F., & Iwao, M. (2011). Synthesis, structure–activity relationships, and mechanism of action of anti-HIV-1 lamellarin α 20-sulfate analogues. Bioorganic & Medicinal Chemistry, 19(24), 7541–7550. https://doi.org/10.1016/j.bmc.2011.10.030
  • Khiati, S., Seol, Y., Agama, K., Dalla Rosa, I., Agrawal, S., Fesen, K., Zhang, H., Neuman, K. C., & Pommier, Y. (2014). Poisoning of mitochondrial topoisomerase I by lamellarin D. Molecular Pharmacology, 86(2), 193–199. https://doi.org/10.1124/mol.114.092833
  • Kluza, J., Gallego, M.-A., Loyens, A., Beauvillain, J.-C., Sousa-Faro, J.-M F., Cuevas, C., Marchetti, P., & Bailly, C. (2006). Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. Cancer Research, 66(6), 3177–3187. https://doi.org/10.1158/0008-5472.CAN-05-1929
  • Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature, 586(7830), 516–527. https://doi.org/10.1038/s41586-020-2798-3
  • Kubra, B., Badshah, S. L., Faisal, S., Sharaf, M., Emwas, A.-H., Jaremko, M., & Abdalla, M. (2022). Inhibition of the predicted allosteric site of the SARS-CoV-2 main protease through flavonoids. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2022.2140201
  • Lee, J. K., & Shin, O. S. (2019). Advances in Zika virus-host cell interaction: Current knowledge and future perspectives. International Journal of Molecular Sciences, 20(5), 1101. https://doi.org/10.3390/ijms20051101
  • Li, Q. X., & Kang, C. B. (2021). Structure and dynamics of Zika virus protease and its insights into inhibitor design. Biomedicines, 9(8), 1044. https://doi.org/10.3390/biomedicines9081044
  • Lin, C. (2006). HCV NS3-4A serine protease. In S. L. Tan (Ed.), Hepatitis C viruses: Genomes and molecular biology. HorizonBioscience https://www.ncbi.nlm.nih.gov/books/NBK1623/
  • Liu, Z., Liu, X., Yang, S., Miao, X., Li, D., & Wang, D. (2022). Titanium-mediated aza-nazarov annulation for the synthesis of N-fused tricycles: A general method to access lamellarin analogues. The Journal of Organic Chemistry, 87(15), 10319–10332. https://doi.org/10.1021/acs.joc.2c01379
  • Liu, C., Zhou, Q. Q., Li, Y. Z., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Louten, J. (2016). Virus replication. In Essential human virology (pp. 49–70). Elsevier. https://doi.org/10.1016/B978-0-12-800947-5.00004-1
  • Lu, W.-Y., Li, H.-J., Li, Q.-Y., & Wu, Y.-C. (2021). Application of marine natural products in drug research. Bioorganic & Medicinal Chemistry, 35, 116058. https://doi.org/10.1016/j.bmc.2021.116058
  • Lv, Z. T., Chu, Y., & Wang, Y. (2015). HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV/AIDS (Auckland, N.Z.), 7, 95–104. https://doi.org/10.2147/Hiv.S79956
  • Michel, C. J., Mayer, C., Poch, O., & Thompson, J. D. (2020). Characterization of accessory genes in coronavirus genomes. Virology Journal, 17(1), 131. https://doi.org/10.1186/s12985-020-01402-1
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moriou, C., Lacroix, D., Petek, S., El-Demerdash, A., Trepos, R., Leu, T. M., Florean, C., Diederich, M., Hellio, C., Debitus, C., & Al-Mourabit, A. (2021). Bioactive bromotyrosine derivatives from the Pacific marine sponge Suberea clavata (Pulitzer-Finali, 1982). Marine Drugs, 19(3), 143. https://doi.org/10.3390/md19030143
  • Neagoie, C., Vedrenne, E., Buron, F., Mérour, J.-Y., Rosca, S., Bourg, S., Lozach, O., Meijer, L., Baldeyrou, B., Lansiaux, A., & Routier, S. (2012). Synthesis of chromeno[3,4-b]indoles as lamellarin D analogues: A novel DYRK1A inhibitor class. European Journal of Medicinal Chemistry, 49, 379–396. https://doi.org/10.1016/j.ejmech.2012.01.040
  • Nitsche, C. (2019). Proteases from dengue, West Nile and Zika viruses as drug targets. Biophysical Reviews, 11(2), 157–165. https://doi.org/10.1007/s12551-019-00508-3
  • Nweze, J. A., Mbaoji, F. N., Li, Y.-M., Yang, L.-Y., Huang, S.-S., Chigor, V. N., Eze, E. A., Pan, L.-X., Zhang, T., & Yang, D.-F. (2021). Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: A review of recent articles. Infectious Diseases of Poverty, 10(1), 9. https://doi.org/10.1186/s40249-021-00796-6
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Papon, N., Copp, B. R., & Courdavault, V. (2022). Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnology Advances, 54, 107871. https://doi.org/10.1016/j.biotechadv.2021.107871
  • Petersen, L. R., Brault, A. C., & Nasci, R. S. (2013). West Nile virus: Review of the literature. JAMA, 310(3), 308–315. https://doi.org/10.1001/jama.2013.8042
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Phoo, W. W., Li, Y., Zhang, Z. Z., Lee, M. Y. Q., Loh, Y. R., Tan, Y. B., Ng, E. Y., Lescar, J., Kang, C. B., & Luo, D. H. (2016). Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nature Communications, 7, 13410. https://doi.org/10.1038/ncomms13410
  • Plourde, A. R., & Bloch, E. M. (2016). A literature review of Zika virus. Emerging Infectious Diseases, 22(7), 1185–1192. https://doi.org/10.3201/eid2207.151990
  • Quesada, A. R., García Grávalos, M. D., & Fernández Puentes, J. L. (1996). Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. British Journal of Cancer, 74(5), 677–682. https://doi.org/10.1038/bjc.1996.421
  • Reddy, M. V. R., Rao, M. R., Rhodes, D., Hansen, M. S., Rubins, K., Bushman, F. D., Venkateswarlu, Y., & Faulkner, D. J. (1999). Lamellarin α 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. Journal of Medicinal Chemistry, 42(11), 1901–1907. https://doi.org/10.1021/jm9806650
  • Ridley, C. P., Reddy, M. V. R., Rocha, G., Bushman, F. D., & Faulkner, D. J. (2002). Total synthesis and evaluation of lamellarin α 20-Sulfate analogues. Bioorganic & Medicinal Chemistry, 10(10), 3285–3290. https://doi.org/10.1016/S0968-0896(02)00237-7
  • Satyanarayana, I., Yang, D.-Y., & Liou, T.-J. (2020). Synthesis of lamellarin R, lukianol A, lamellarin O and their analogues. RSC Advances, 10(70), 43168–43174. https://doi.org/10.1039/d0ra09249e
  • Sebak, M., Molham, F., Tammam, M. A., & El-Demerdash, A. (2022). Chemical diversity and biological activities of anthraquinones derived from marine fungi: A comprehensive update. ChemRxiv.
  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
  • Shi, Y., & Gao, G. F. (2017). Structural biology of the Zika virus. Trends in Biochemical Sciences, 42(6), 443–456. https://doi.org/10.1016/j.tibs.2017.02.009
  • Sirohi, D., & Kuhn, R. J. (2017). Zika virus structure, maturation, and receptors. The Journal of Infectious Diseases, 216(suppl_10), S935–S944. https://doi.org/10.1093/infdis/jix515
  • Su, S., Du, L. Y., & Jiang, S. B. (2021). Learning from the past: Development of safe and effective COVID-19 vaccines. Nature Reviews. Microbiology, 19(3), 211–219. https://doi.org/10.1038/s41579-020-00462-y
  • Tardy, C., Facompré, M., Laine, W., Baldeyrou, B., García-Gravalos, D., Francesch, A., Mateo, C., Pastor, A., Jiménez, J. A., Manzanares, I., Cuevas, C., & Bailly, C. (2004). Topoisomerase I-mediated DNA cleavage as a guide to the development of antitumor agents derived from the marine alkaloid lamellarin D: Triester derivatives incorporating amino acid residues. Bioorganic & Medicinal Chemistry, 12(7), 1697–1712. https://doi.org/10.1016/j.bmc.2004.01.020
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Voss, S., & Nitsche, C. (2020). Inhibitors of the Zika virus protease NS2B-NS3. Bioorganic & Medicinal Chemistry Letters, 30(5), 126965. https://doi.org/10.1016/j.bmcl.2020.126965
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, R., Chen, J. H., & Wei, G. W. (2021). Mechanisms of SARS-CoV-2 evolution revealing vaccine-resistant mutations in Europe and America. The Journal of Physical Chemistry Letters, 12(49), 11850–11857. https://doi.org/10.1021/acs.jpclett.1c03380
  • WHO. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
  • Yan, W. Z., Zheng, Y. H., Zeng, X. T., He, B., & Cheng, W. (2022). Structural biology of SARS-CoV-2: Open the door for novel therapies. Signal Transduction and Targeted Therapy, 7(1), 26. https://doi.org/10.1038/s41392-022-00884-5
  • Yao, H. P., Song, Y. T., Chen, Y., Wu, N. P., Xu, J. L., Sun, C. J., Zhang, J. X., Weng, T. H., Zhang, Z. Y., Wu, Z. G., Cheng, L. F., Shi, D. R., Lu, X. Y., Lei, J. L., Crispin, M., Shi, Y. G., Li, L. J., & Li, S. (2020). Molecular architecture of the SARS-CoV-2 virus. Cell, 183(3), 730–738.e13. https://doi.org/10.1016/j.cell.2020.09.018
  • Yoshida, K., Itoyama, R., Yamahira, M., Tanaka, J., Loaëc, N., Lozach, O., Durieu, E., Fukuda, T., Ishibashi, F., Meijer, L., & Iwao, M. (2013). Synthesis, resolution, and biological evaluation of atropisomeric (aR)- and (aS)-16-methyllamellarins N: Unique effects of the axial chirality on the selectivity of protein kinases inhibition. Journal of Medicinal Chemistry, 56(18), 7289–7301. https://doi.org/10.1021/jm400719y
  • Zephyr, J., Kurt Yilmaz, N., & Schiffer, C. A. (2021). Viral proteases: Structure, mechanism and inhibition. Enzymes, 50, 301–333. https://doi.org/10.1016/bs.enz.2021.09.004
  • Zhang, H., Conte, M. M., Huang, X.-C., Khalil, Z., & Capon, R. J. (2012). A search for BACE inhibitors reveals new biosynthetically related pyrrolidones, furanones and pyrroles from a southern Australian marine sponge, Ianthella sp. Organic & Biomolecular Chemistry, 10(13), 2656–2663. https://doi.org/10.1039/C2OB06747A
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.