185
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of levomenthol derivatives as potential dipeptidyl peptidase-4 inhibitors: a comparative study with gliptins

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4029-4047 | Received 07 Feb 2023, Accepted 20 May 2023, Published online: 01 Jun 2023

References

  • Nojima, H., Kanou, K., Terashi, G., Takeda-Shitaka, M., Inoue, G., Atsuda, K., Itoh, C., Iguchi, C., & Matsubara, H. (2016). Comprehensive analysis of the Co-structures of dipeptidyl peptidase IV and its inhibitor. BMC Structural Biology, 16(1), 11. https://doi.org/10.1186/s12900-016-0062-8
  • Abbott, C. A., McCaughan, G. W., & Gorrell, M. D. (1999). Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Letters, 458(3), 278–284. https://doi.org/10.1016/s0014-5793(99)01166-7
  • Agrawal, N., Mujwar, S., Goyal, A., & Gupta, J. K. (2022). Phytoestrogens as potential antiandrogenic agents against prostate cancer: An in silico analysis. Letters in Drug Design & Discovery, 19(1), 69–78. https://doi.org/10.2174/1570180818666210813121431
  • Ah, A., & Yi, A. (2019). In silico pharmacokinetics and molecular docking studies of lead compounds derived from Diospyros mespiliformis. PharmaTutor, 7(3), 31. https://doi.org/10.29161/PT.v7.i3.2019.31
  • Ahishali, B., & Kaya, M. (2021). Evaluation of blood-brain barrier integrity using vascular permeability markers: Evans blue, sodium fluorescein, albumin-Alexa Fluor conjugates, and horseradish peroxidase. Methods in Molecular Biology (Clifton, N.J.), 2367, 87–103. https://doi.org/10.1007/7651_2020_316
  • Ahrén, B. (2019). DPP-4 inhibition and the path to clinical proof. Frontiers in Endocrinology, 10, 376. https://doi.org/10.3389/fendo.2019.00376
  • Ahrén, B., & Foley, J. E. (2016). Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: Focus on alpha and beta cell function and lipid metabolism. Diabetologia, 59(5), 907–917. https://doi.org/10.1007/s00125-016-3899-2
  • Akinnusi, P. A., Olubode, S. O., Alade, A. A., Ahmed, S. A., Ayekolu, S. F., Ogunlade, T. M., Gbore, D. J., Rotimi, O. D., & Ayodele, A. O. (2022). A molecular modeling approach for structure-based virtual screening and identification of novel anti-hypercholesterolemic agents from Grape. Informatics in Medicine Unlocked, 32, 101065. https://doi.org/10.1016/j.imu.2022.101065
  • Ammirati, M. J., Andrews, K. M., Boyer, D. D., Brodeur, A. M., Danley, D. E., Doran, S. D., Hulin, B., Liu, S., McPherson, R. K., Orena, S. J., Parker, J. C., Polivkova, J., Qiu, X., Soglia, C. B., Treadway, J. L., VanVolkenburg, M. A., Wilder, D. C., & Piotrowski, D. W. (2009). 3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor. Bioorganic & Medicinal Chemistry Letters, 19(7), 1991–1995. https://doi.org/10.1016/j.bmcl.2009.02.041
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Boyce, S. E., Tirunagari, N., Niedziela-Majka, A., Perry, J., Wong, M., Kan, E., Lagpacan, L., Barauskas, O., Hung, M., Fenaux, M., Appleby, T., Watkins, W. J., Schmitz, U., & Sakowicz, R. (2014). Structural and regulatory elements of HCV NS5B polymerase – β-loop and C-terminal tail – are required for activity of allosteric thumb site II inhibitors. PLoS One, 9(1), e84808. https://doi.org/10.1371/journal.pone.0084808
  • Brunton, S. A., & Wysham, C. H. (2020). GLP-1 receptor agonists in the treatment of type 2 diabetes: Role and clinical experience to date. Postgraduate Medicine, 132(sup2), 3–14. https://doi.org/10.1080/00325481.2020.1798099
  • Chae, S. Y., Jang, M.-K., & Nah, J.-W. (2005). Influence of molecular weight on oral absorption of water soluble chitosans. Journal of Controlled Release, 102(2), 383–394. https://doi.org/10.1016/j.jconrel.2004.10.012
  • Chaicha-Brom, T., & Yasmeen, T. (2013). DPP-IV inhibitor-associated arthralgias. Endocrine Practice, 19(2), 377–381. https://doi.org/10.4158/EP13076.LT
  • Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties. In Dosage form design parameters (pp. 731–755). Elsevier. https://doi.org/10.1016/B978-0-12-814421-3.00021-X
  • ChemAxon. (2020). Marvin 20.21.0. https://www.chemaxon.com.
  • Chia, C. W., & Egan, J. M. (2020). Incretins in obesity and diabetes. Annals of the New York Academy of Sciences, 1461(1), 104–126. https://doi.org/10.1111/nyas.14211
  • Crickx, E., Marroun, I., Veyrie, C., Le Beller, C., Schoindre, Y., Bouilloud, F., Blétry, O., & Kahn, J.-E. (2014). DPP4 inhibitor-induced polyarthritis: A report of three cases. Rheumatology International, 34(2), 291–292. https://doi.org/10.1007/s00296-013-2710-7
  • Czyrski, A. (2019). Determination of the lipophilicity of ibuprofen, naproxen, ketoprofen, and flurbiprofen with thin-layer chromatography. Journal of Chemistry, 2019, 1–6. https://doi.org/10.1155/2019/3407091
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • David, T. I., Adelakun, N. S., Omotuyi, O. I., Metibemu, D. S., Ekun, O. E., Eniafe, G. O., Inyang, O. K., Adewumi, B., Enejoh, O. A., Owolabi, R. T., & Oribamise, E. I. (2018). Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR. Bioinformation, 14(9), 574–579. https://doi.org/10.6026/97320630014574
  • Deacon, C. F., Nauck, M. A., Toft-Nielsen, M., Pridal, L., Willms, B., & Holst, J. J. (1995). Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes, 44(9), 1126–1131. https://doi.org/10.2337/diab.44.9.1126
  • Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molecular structure. Journal of Chemical Information and Computer Sciences, 44(3), 1000–1005. https://doi.org/10.1021/ci034243x
  • Di, L., & Kerns, E. H. (2016). Effects of properties on biological assays. In Drug-like properties (pp. 487–496). Elsevier. https://doi.org/10.1016/B978-0-12-801076-1.00040-X
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Fidan, O., Mujwar, S., & Kciuk, M. (May 2022). Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Molecular Diversity, 27(1), 463–475. https://doi.org/10.1007/s11030-022-10440-6
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gahtori, J., Pant, S., & Srivastava, H. K. (2020). Modeling antimalarial and antihuman African trypanosomiasis compounds: A ligand- and structure-based approaches. Molecular Diversity, 24(4), 1107–1124. https://doi.org/10.1007/s11030-019-10015-y
  • Gallwitz, B. (2019). Clinical use of DPP-4 inhibitors. Frontiers in Endocrinology, 10, 389. https://doi.org/10.3389/fendo.2019.00389
  • Galstyan, K. O., Nedosugova, L. V., Petunina, N. A., Trakhtenberg, J. A., Vostokova, N. V., Karavaeva, O. V., & Chasovskaya, T. E. (2015). First Russian DPP-4 inhibitor Gosogliptin comparing to Vildagliptin in type 2 diabetes mellitus patients. Diabetes Mellitus, 19(1), 89–96. https://doi.org/10.14341/DM7233
  • Guengerich, F. P. (2011). Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metabolism and Pharmacokinetics, 26(1), 3–14. https://doi.org/10.2133/dmpk.dmpk-10-rv-062
  • Gupta, J. K., Gour, A., Mujwar, S., & Shah, K. (2021). Docking based screening of curcumin derivatives: A novel approach in the inhibition of tubercular DHFR. International Journal of Computational Biology and Drug Design, 14(4), 297. https://doi.org/10.1504/IJCBDD.2021.10042394
  • Hamad Al-Mijalli, S., ELsharkawy, E. R., Abdallah, E. M., Hamed, M., El Omari, N., Mahmud, S., Alshahrani, M. M., Mrabti, H. N., & Bouyahya, A. (2022). Determination of volatile compounds of Mentha piperita and Lavandula multifida and investigation of their antibacterial, antioxidant, and antidiabetic properties. Evidence-Based Complementary and Alternative Medicine : eCAM, 2022, 9306251. https://doi.org/10.1155/2022/9306251
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hess, B. (2002). Convergence of sampling in protein simulations. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 65(3 Pt 1), 031910. https://doi.org/10.1103/PhysRevE.65.031910
  • Hollenberg, P. F. (2002). Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metabolism Reviews, 34(1–2), 17–35. https://doi.org/10.1081/DMR-120001387
  • Huang, J., Deng, X., Zhou, S., Wang, N., Qin, Y., Meng, L., Li, G., Xiong, Y., Fan, Y., Guo, L., Lan, D., Xing, J., Jiang, W., & Li, Q. (2019). Identification of novel uracil derivatives incorporating benzoic acid moieties as highly potent Dipeptidyl Peptidase-IV inhibitors. Bioorganic & Medicinal Chemistry, 27(4), 644–654. https://doi.org/10.1016/j.bmc.2019.01.001
  • International Diabetes Federation. (2021). IDF Diabetes Atlas, 10th Edition. Diabetes Atlas, [Online]. Available https://diabetesatlas.org/
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jain, R., & Mujwar, S. (2020). Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Structural Chemistry, 31(6), 2487–2499. https://doi.org/10.1007/s11224-020-01605-w
  • Jha, V., & Bhadoriya, K. S. (2018). Synthesis, pharmacological evaluation and molecular docking studies of pyrimidinedione based DPP-4 inhibitors as antidiabetic agents. Journal of Molecular Structure, 1158, 96–105. https://doi.org/10.1016/j.molstruc.2018.01.014
  • Kapusta, K., Kar, S., Collins, J. T., Franklin, L. M., Kolodziejczyk, W., Leszczynski, J., & Hill, G. A. (2021). Protein reliability analysis and virtual screening of natural inhibitors for SARS-CoV-2 main protease (Mpro) through docking, molecular mechanic & dynamic, and ADMET profiling. Journal of Biomolecular Structure & Dynamics, 39(17), 6810–6827. https://doi.org/10.1080/07391102.2020.1806930
  • Kciuk, M., Mujwar, S., Marciniak, B., Gielecińska, A., Bukowski, K., Mojzych, M., & Kontek, R. (2023). Genotoxicity of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in normal and cancer cells in vitro. International Journal of Molecular Sciences, 24(4), 4053. https://doi.org/10.3390/ijms24044053
  • Kciuk, M., Mujwar, S., Rani, I., Munjal, K., Gielecińska, A., Kontek, R., & Shah, K. (2022). Computational bioprospecting guggulsterone against ADP ribose phosphatase of SARS-CoV. Molecules, 27(23), 8287. https://doi.org/10.3390/molecules27238287
  • Kciuk, M., Mujwar, S., Szymanowska, A., Marciniak, B., Bukowski, K., Mojzych, M., & Kontek, R. (2022). Preparation of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides and their experimental and computational biological studies. International Journal of Molecular Sciences, 23(11), 5892. https://doi.org/10.3390/ijms23115892
  • Kieran, J., Schmitz, S., O'Leary, A., Walsh, C., Bergin, C., Norris, S., & Barry, M. (2013). The relative efficacy of boceprevir and telaprevir in the treatment of hepatitis C virus genotype 1. Clinical Infectious Diseases, 56(2), 228–235. https://doi.org/10.1093/cid/cis880
  • Kikiowo, B., Ahmad, I., Alade, A. A., T. Ijatuyi, T., Iwaloye, O., & Patel, H. M. (2022). Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2022.2155699
  • Kikiowo, B., Ogunleye, A. J., Inyang, O. K., Adelakun, N. S., Omotuyi, O. I., Metibemu, D. S., David, T. I., Oludoyi, O. O., & Ijatuyi, T. T. (2020). Flavones scaffold of Chromolaena odorata as a potential xanthine oxidase inhibitor: Induced Fit Docking and ADME studies. BioImpacts : BI, 10(4), 227–234. https://doi.org/10.34172/bi.2020.29
  • Kikiowo, B., Ogunleye, A., Metibemu, D. S., Omotuyi, O., & Adelakun, N. (2020). Virtual screening and pharmacokinetic studies of potential MAO-B inhibitors from traditional Chinese medicine. Journal of Biological Engineering Research and Review, 7, 8–15.
  • Kikiowo, B., Oni, E. A., Iwaloye, O., Kayode Inyang , O., Alade, A. A., Akinwotu, S. T., & Oluwalade , O. R. (2021). Molecular interaction and inhibitory activity of Dandelion’s compounds on nucleoprotein: A therapeutic intervention in Lassa fever. Biointerface Research in Applied Chemistry, 11(5), 12573–12583. https://doi.org/10.33263/BRIAC115.1257312583
  • Kirby, M., Yu, D. M. T., O'Connor, S., & Gorrell, M. D. (2009). Inhibitor Selectivity in clinical application of DPP-4 inhibition. Clinical Science (London, England : 1979), 118(1), 31–41. https://doi.org/10.1042/CS20090047
  • Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in Molecular Biology (Clifton, N.J.), 857, 231–257. https://doi.org/10.1007/978-1-61779-588-6_10
  • Kumar, A., Baitha, U., Aggarwal, P., & Jamshed, N. (2016). A fatal case of menthol poisoning. International Journal of Applied & Basic Medical Research, 6(2), 137–139. https://doi.org/10.4103/2229-516X.179015
  • Kumar, B. K., Faheem, Sekhar, K. V. G. C., Ojha, R., Prajapati, V. K., Pai, A., & Murugesan, S. (2022). Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure & Dynamics, 40(3), 1363–1386. https://doi.org/10.1080/07391102.2020.1824814
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Advances in Bioinformatics, 2014, 1–10. https://doi.org/10.1155/2014/502618
  • Lauster, C. D., McKaveney, T. P., & Muench, S. V. (2007). Vildagliptin: A novel oral therapy for type 2 diabetes mellitus. American Journal of Health-System Pharmacy : AJHP, 64(12), 1265–1273. https://doi.org/10.2146/ajhp060564
  • Li, C., Lu, W., Lu, C., Xiao, W., Shen, X., Huang, J., Liu, G., & Tang, Y. (2012). Identification of diverse dipeptidyl peptidase IV inhibitors via structure-based virtual screening. Journal of Molecular Modeling, 18(9), 4033–4042. https://doi.org/10.1007/s00894-012-1394-3
  • Lin, Y., Chen, X.-J., He, L., Yan, X.-L., Li, Q.-R., Zhang, X., He, M.-H., Chang, S., Tu, B., Long, Q.-D., & Zeng, Z. (2023). Systematic elucidation of the bioactive alkaloids and potential mechanism from Sophora flavescens for the treatment of eczema via network pharmacology. Journal of Ethnopharmacology, 301, 115799. https://doi.org/10.1016/j.jep.2022.115799
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Liu, Y., & Hu, Y. (2014). Novel DPP-4 inhibitors against diabetes. Future Medicinal Chemistry, 6(7), 793–808. https://doi.org/10.4155/fmc.14.39
  • Livingstone, D. J., & Davis, A. M. (2011). Drug design strategies: Quantitative approaches. Royal Society of Chemistry.
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Malcolm, B. A., Liu, R., Lahser, F., Agrawal, S., Belanger, B., Butkiewicz, N., Chase, R., Gheyas, F., Hart, A., Hesk, D., Ingravallo, P., Jiang, C., Kong, R., Lu, J., Pichardo, J., Prongay, A., Skelton, A., Tong, X., Venkatraman, S., … Njoroge, F. G. (2006). SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells. Antimicrobial Agents and Chemotherapy, 50(3), 1013–1020. https://doi.org/10.1128/AAC.50.3.1013-1020.2006
  • Manandhar, S., Pai, K. S. R., Krishnamurthy, P. T., Kiran, A. V. V. V. R., & Kumari, G. K. (2022). Identification of novel TMPRSS2 inhibitors against SARS-CoV-2 infection: A structure-based virtual screening and molecular dynamics study. Structural Chemistry, 33(5), 1529–1541. https://doi.org/10.1007/s11224-022-01921-3
  • Maréchal, J.-D., Kemp, C. A., Roberts, G. C. K., Paine, M. J. I., Wolf, C. R., & Sutcliffe, M. J. (2008). Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions: Drug metabolism by CYPs: Insight from modelling. British Journal of Pharmacology, 153(S1), S82–S89. https://doi.org/10.1038/sj.bjp.0707570
  • Marsh, J. A., & Teichmann, S. A. (2011). Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure (London, England : 1993), 19(6), 859–867. https://doi.org/10.1016/j.str.2011.03.010
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Metzler, W. J., Yanchunas, J., Weigelt, C., Kish, K., Klei, H. E., Xie, D., Zhang, Y., Corbett, M., Tamura, J. K., He, B., Hamann, L. G., Kirby, M. S., & Marcinkeviciene, J. (2008). Involvement of DPP-IV catalytic residues in enzyme-saxagliptin complex formation. Protein Science : A Publication of the Protein Society, 17(2), 240–250. https://doi.org/10.1110/ps.073253208
  • Mollazadeh, S., Sahebkar, A., Hadizadeh, F., Behravan, J., & Arabzadeh, S. (2018). Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sciences, 214, 118–123. https://doi.org/10.1016/j.lfs.2018.10.048
  • Mujwar, S. (2021). Computational repurposing of tamibarotene against triple mutant variant of SARS-CoV-2. Computers in Biology and Medicine, 136, 104748. https://doi.org/10.1016/j.compbiomed.2021.104748
  • Mujwar, S., & Kumar, V. (2020). Computational drug repurposing approach to identify potential fatty acid-binding protein-4 inhibitors to develop novel antiobesity therapy. Assay and Drug Development Technologies, 18(7), 318–327. https://doi.org/10.1089/adt.2020.976
  • Mujwar, S., Sun, L., & Fidan, O. (2022). In silico evaluation of food‐derived carotenoids against SARS‐CoV ‐2 drug targets: Crocin is a promising dietary supplement candidate for COVID ‐. Journal of Food Biochemistry, 46(9), 19. https://doi.org/10.1111/jfbc.14219
  • Mujwar, S., & Tripathi, A. (2021). Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. Journal of Molecular Modelling, 28, 193. https://doi.org/10.21203/rs.3.rs-1057044/v1
  • Muruganathan, U., Srinivasan, S., & Vinothkumar, V. (2017). Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin-nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 92, 229–239. https://doi.org/10.1016/j.biopha.2017.05.068
  • Nauck, M. A., & Meier, J. J. (2018). Incretin hormones: Their role in health and disease. Diabetes, Obesity and Metabolism, 20, 5–21. https://doi.org/10.1111/dom.13129
  • Neumiller, J. J. (2015). Incretin-based therapies. The Medical Clinics of North America, 99(1), 107–129. https://doi.org/10.1016/j.mcna.2014.08.013
  • Obakachi, V. A., Kushwaha, N. D., Kushwaha, B., Mahlalela, M. C., Shinde, S. R., Kehinde, I., & Karpoormath, R. (2021). Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. Journal of Molecular Structure, 1241, 130665. https://doi.org/10.1016/j.molstruc.2021.130665
  • Pantaleão, S., Philot, E., de Resende-Lara, P., Lima, A., Perahia, D., Miteva, M., Scott, A., & Honorio, K. (2018). Structural dynamics of DPP-4 and its influence on the projection of bioactive ligands. Molecules, 23(2), 490. https://doi.org/10.3390/molecules23020490
  • Panwar, U., & Singh, S. K. (2018). Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). Journal of Biomolecular Structure & Dynamics, 36(12), 3199–3217. https://doi.org/10.1080/07391102.2017.1384400
  • Pathak, R., & Bridgeman, M. B. (2010). Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. P T, 35(9), 509–513.
  • Perni, R. B., Almquist, S. J., Byrn, R. A., Chandorkar, G., Chaturvedi, P. R., Courtney, L. F., Decker, C. J., Dinehart, K., Gates, C. A., Harbeson, S. L., Heiser, A., Kalkeri, G., Kolaczkowski, E., Lin, K., Luong, Y.-P., Rao, B. G., Taylor, W. P., Thomson, J. A., Tung, R. D., … Lin, C. (2006). Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3-4A serine protease. Antimicrobial Agents and Chemotherapy, 50(3), 899–909. https://doi.org/10.1128/AAC.50.3.899-909.2006
  • Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. The Journal of Chemical Physics, 103(9), 3668–3679. https://doi.org/10.1063/1.470043
  • Posch, H. A., Hoover, W. G., & Vesely, F. J. (1986). Canonical dynamics of the Nosé oscillator: Stability, order, and chaos. Physical Review. A, General Physics, 33(6), 4253–4265. https://doi.org/10.1103/PhysRevA.33.4253
  • Rani, I., Goyal, A., & Sharma, M. (2022). Computational design of phosphatidylinositol 3-kinase inhibitors. Assay and Drug Development Technologies, 20(7), 317–337. https://doi.org/10.1089/adt.2022.057
  • Rasmussen, H. B., Branner, S., Wiberg, F. C., & Wagtmann, N. (2003). Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature Structural Biology, 10(1), 19–25. https://doi.org/10.1038/nsb882
  • Rodríguez, F., Somovilla, V. J., Corzana, F., Busto, J. H., Avenoza, A., & Peregrina, P. J. M. (2012). Cyclohexane ring as a tool to select the presentation of the carbohydrate moiety in glycosyl amino acids. Chemistry (Weinheim an der Bergstrasse, Germany), 18(16), 5096–5104. https://doi.org/10.1002/chem.201103089
  • Sajal, H., Patil, S. M., Raj, R., Shbeer, A. M., Ageel, M., & Ramu, R. (2022). Computer-aided screening of phytoconstituents from Ocimum tenuiflorum against diabetes mellitus targeting DPP4 inhibition: A combination of molecular docking, molecular dynamics, and pharmacokinetics approaches. Molecules, 27(16), 5133. https://doi.org/10.3390/molecules27165133
  • Saraiva, A., Soares, J. N., Costa, N. J. C., Sousa, J. V. M., Ferreira, N. M. F., Valente, A., & Soares, S. (2019). Study of dipeptidil peptidase 4 inhibitors based on molecular docking experiments [Paper presentation]. Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies, in, Prague, Czech Republic: SCITEPRESS - Science and Technology Publications, pp. 322–330. https://doi.org/10.5220/0007692203220330
  • Scheen, A. J. (2010). Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes, Obesity & Metabolism, 12(8), 648–658. https://doi.org/10.1111/j.1463-1326.2010.01212.x
  • Scheen, A. J. (2018). The safety of gliptins: Updated data in 2018. Expert Opinion on Drug Safety, 17(4), 387–405. https://doi.org/10.1080/14740338.2018.1444027
  • Schrödinger Release 2018-1. (2021). Maestro. Schrödinger, LLC.
  • Schrödinger Release. (2021). 2018-1, ‘LigPrep. Schrödinger, LLC.
  • Scirica, B. M., Bhatt, D. L., Braunwald, E., Steg, P. G., Davidson, J., Hirshberg, B., Ohman, P., Frederich, R., Wiviott, S. D., Hoffman, E. B., Cavender, M. A., Udell, J. A., Desai, N. R., Mosenzon, O., McGuire, D. K., Ray, K. K., Leiter, L. A., & Raz, I. (2013). Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. The New England Journal of Medicine, 369(14), 1317–1326. https://doi.org/10.1056/NEJMoa1307684
  • Scott, L. J. (2017). Sitagliptin: A review in Type 2 diabetes. Drugs, 77(2), 209–224. https://doi.org/10.1007/s40265-016-0686-9
  • Shah, K., Mujwar, S., Gupta, J. K., Shrivastava, S. K., & Mishra, P. (2019). Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitor. Assay and Drug Development Technologies, 17(6), 285–291. https://doi.org/10.1089/adt.2019.943
  • Shah, K., Mujwar, S., Krishna, G., & Gupta, J. K. (2020). Computational design and biological depiction of novel naproxen derivative. Assay and Drug Development Technologies, 18(7), 308–317. https://doi.org/10.1089/adt.2020.977
  • Sharma, P., Joshi, T., Mathpal, S., Chandra, S., & Tamta, S. (2022). In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(21), 10543–10560. https://doi.org/10.1080/07391102.2021.1944910
  • Sharma, K. K., Singh, B., Mujwar, S., & Bisen, P. S. (2020). Molecular docking based analysis to elucidate the DNA topoisomerase IIβ as the potential target for the ganoderic acid; A natural therapeutic agent in cancer therapy. Current Computer-Aided Drug Design, 16(2), 176–189. https://doi.org/10.2174/1573409915666190820144759
  • Shaw Research, D. E. (2021). Schrödinger Release 2022-3: Desmond molecular dynamics system: Maestro-Desmond interoperability tools. Schrödinger.
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Sherman, W., Beard, H. S., & Farid, R. (2006). Use of an induced fit receptor structure in virtual screening. Chemical Biology & Drug Design, 67(1), 83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x
  • Shinu, P., Sharma, M., Gupta, G. L., Mujwar, S., Kandeel, M., Kumar, M., Nair, A. B., Goyal, M., Singh, P., Attimarad, M., Venugopala, K. N., Nagaraja, S., Telsang, M., Aldhubiab, B. E., & Morsy, M. A. (2022). Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition. Molecules, 27(20), 6905. https://doi.org/10.3390/molecules27206905
  • Shoaib, M., Alimardan Israyilova, A., & Ganbarov, K. (2019). Cyclohexane and its functionally substituted derivatives: Important class of organic compounds with potential antimicrobial activities. Journal of Microbiology, Biotechnology and Food Sciences, 9(1), 84–87. https://doi.org/10.15414/jmbfs.2019.9.1.84-87
  • Subrahmanyan, N. A., Koshy, R. M., Jacob, K., & Pappachan, J. M. (2021). Efficacy and cardiovascular safety of DPP-4 inhibitors. Current Drug Safety, 16(2), 154–164. https://doi.org/10.2174/1574886315999200819150544
  • Toukan, K., & Rahman, A. (1985). Molecular-dynamics study of atomic motions in water. Physical Review. B, Condensed Matter, 31(5), 2643–2648. https://doi.org/10.1103/PhysRevB.31.2643
  • Turner, J. V., & Agatonovic-Kustrin, S. (2007). In silico prediction of oral bioavailability. In Comprehensive Medicinal Chemistry II (pp. 699–724). Elsevier. https://doi.org/10.1016/B0-08-045044-X/00147-4
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vo, D.-V., Hong, K. H., Lee, J., & Park, H. (2021). Synthesis, in vitro evaluation, and computational simulations studies of 1,2,3-triazole analogues as DPP-4 inhibitors. Bioorganic & Medicinal Chemistry, 29, 115861. https://doi.org/10.1016/j.bmc.2020.115861
  • Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress in Clinical and Biological Research, 289, 433–444.
  • World Health Organization. (2021). Diabetes. WHO [Online]. https://www.who.int/news-room/fact-sheets/detail/diabetes
  • Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., & Huang, Z. (2020). Computational approaches in preclinical studies on drug discovery and development. Frontiers in Chemistry, 8, 726. https://doi.org/10.3389/fchem.2020.00726
  • Yokota, K., & Igaki, N. (2012). Sitagliptin (DPP-4 Inhibitor)-induced rheumatoid arthritis in type 2 diabetes mellitus: A case report. Internal Medicine (Tokyo, Japan), 51(15), 2041–2044. https://doi.org/10.2169/internalmedicine.51.7592
  • Z., Liang, & Li, Q. X. (2018). π-Cation interactions in molecular recognition: Perspectives on pharmaceuticals and pesticides. Journal of Agricultural and Food Chemistry, 66(13), 3315–3323. https://doi.org/10.1021/acs.jafc.8b00758

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.