148
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Unravelling the Relacatib activity against the CTSK proteins causing pycnodysostosis: a molecular docking and dynamics approach

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4121-4132 | Received 04 Jan 2023, Accepted 22 May 2023, Published online: 31 May 2023

References

  • Amiri, S., Sansom, M. S. P., & Biggin, P. C. (2007). Molecular dynamics studies of AChBP with nicotine and carbamylcholine: The role of water in the binding pocket. Protein Engineering, Design & Selection : PEDS, 20(7), 353–359. https://doi.org/10.1093/protein/gzm029
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Bizaoui, V., Michot, C., Baujat, G., Amouroux, C., Baron, S., Capri, Y., Cohen-Solal, M., Collet, C., Dieux, A., Geneviève, D., Isidor, B., Monnot, S., Rossi, M., Rothenbuhler, A., Schaefer, E., & Cormier-Daire, V. (2019). Pycnodysostosis: Natural history and management guidelines from 27 French cases and a literature review. Clinical Genetics, 96(4), 309–316. https://doi.org/10.1111/cge.13591
  • Boonen, S., Rosenberg, E., Claessens, F., Vanderschueren, D., & Papapoulos, S. (2012). Inhibition of cathepsin K for treatment of osteoporosis. Current Osteoporosis Reports, 10(1), 73–79. https://doi.org/10.1007/s11914-011-0085-9
  • Bromme, D., & Okamoto, K. (1995). Human cathepsin 02, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biological Chemistry Hoppe-Seyler, 376(6), 379–384. https://doi.org/10.1515/bchm3.1995.376.6.379
  • Brömme, D., & Lecaille, F. (2009). Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opinion on Investigational Drugs, 18(5), 585–600. https://doi.org/10.1517/13543780902832661
  • Brömme, D., Wilson, S. (2011). Role of Cysteine Cathepsins in Extracellular Proteolysis. In Parks, W., Mecham, R. (Eds.), Extracellular Matrix Degradation. Biology of Extracellular Matrix (Vol. 2). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-16861-1_2
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-S3-S2
  • Dai, R., Wu, Z., Chu, H. Y., Lu, J., Lyu, A., Liu, J., & Zhang, G. (2020). Cathepsin K: The action in and beyond bone. Frontiers in Cell and Developmental Biology, 8, 433. https://doi.org/10.3389/fcell.2020.00433
  • Dassault, R. M., Villacoublay, V., & Becard, N. (2016). Dassault Systems Emes Datafirst, 78946. www.3ds.com
  • De Baets, G., Van Durme, J., Reumers, J., Maurer-Stroh, S., Vanhee, P., Dopazo, J., Schymkowitz, J., & Rousseau, F. (2012). SNPeffect 4.0: On-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Research. 40(D1), D935–D939. https://doi.org/10.1093/nar/gkr996
  • Fortuno, C., James, P. A., Young, E. L., Feng, B., Olivier, M., Pesaran, T., Tavtigian, S. V., & Spurdle, A. B. (2018). Improved, ACMG-compliant, in silico prediction of pathogenicity for missense substitutions encoded by TP53 variants. Human Mutation, 39(8), 1061–1069. https://doi.org/10.1002/humu.23553
  • Fujita, Y., Nakata, K., Yasui, N., Matsui, Y., Kataoka, E., Hiroshima, K., Shiba, R. I., & Ochi, T. (2000). Novel mutations of the cathepsin K gene in patients with pycnodysostosis and their characterization. The Journal of Clinical Endocrinology and Metabolism, 85(1), 425–431. https://doi.org/10.1210/jcem.85.1.6247
  • George Priya Doss, C., & Zayed, H. (2017). Comparative computational assessment of the pathogenicity of mutations in the Aspartoacylase enzyme. Metabolic Brain Disease, 32(6), 2105–2118. https://doi.org/10.1007/s11011-017-0090-5
  • George Priya Doss, C., Sudandiradoss, C., Rajasekaran, R., Choudhury, P., Sinha, P., Hota, P., Batra, U. P., & Rao, S. (2008). Applications of computational algorithm tools to identify functional SNPs. Functional & Integrative Genomics, 8(4), 309–316. https://doi.org/10.1007/s10142-008-0086-7
  • Haagerup, A., Hertz, J. M., Christensen, M. F., Binderup, H., & Kruse, T. A. (2000). Cathepsin K gene mutations and 1q21 haplotypes in patients with pycnodysostosis in an outbred population. European Journal of Human Genetics : EJHG, 8(6), 431–436. https://doi.org/10.1038/sj.ejhg.5200481
  • Hassan, M., Shahzadi, S., Seo, S. Y., Alashwal, H., Zaki, N., & Moustafa, A. A. (2018). Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against BACE1 to treat alzheimer’s disease. Frontiers in Computational Neuroscience, 12, 34. https://doi.org/10.3389/fncom.2018.00034
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Kannan, P., Nanda Kumar, M. P., Rathinam, N., Kumar, D. T., & Ramasamy, M. (2022). Elucidating the mutational impact in causing Niemann–Pick disease type C: An in silico approach. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2135598
  • Kaplan, W., & Littlejohn, T. G. (2001). Software review Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2(2), 195–197. https://doi.org/10.1093/bib/2.2.195
  • Kochar, I. P. S., Sethi, A., & Ahamad, A. (2019). A novel variant c.847T > C in CTSK gene leading to pycnodysostosis: A case report. Clinical Medicine Insights. Case Reports, 12, 1179547619837234. https://doi.org/10.1177/1179547619837234
  • Kumar, S. (2014). A patient with pycnodysostosis presenting with seizures and porencephalic cysts. Journal of Neurosciences in Rural Practice, 5(3), 284–286. https://doi.org/10.4103/0976-3147.133606
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lecaille, F., Brömme, D., & Lalmanach, G. (2008). Biochemical properties and regulation of cathepsin K activity. Biochimie, 90(2), 208–226. https://doi.org/10.1016/j.biochi.2007.08.011
  • Lecaille, F., Chazeirat, T., Bojarski, K. K., Renault, J., Saidi, A., Prasad, V. G. N., Samsonov, S., & Lalmanach, G. (2020). Rat cathepsin K: Enzymatic specificity and regulation of its collagenolytic activity. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(2), 140318. https://doi.org/10.1016/j.bbapap.2019.140318
  • Mary, Y. S., Mary, Y. S., Bielenica, A., Armaković, S., Armaković, S. J., Chandramohan, V., & Dammalli, M. (2021). Investigation of the reactivity properties of a thiourea derivative with anticancer activity by DFT and MD simulations. Journal of Molecular Modeling, 27, 217. https://doi.org/10.1007/s00894-021-04835-9
  • Mitternacht, S. (2016). FreeSASA: An open-source C library for solvent accessible surface area calculations. F1000Research, 5, 189. https://doi.org/10.12688/f1000research.7931.1
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Motyckova, G., & Fisher, D. (2002). Pycnodysostosis: Role and regulation of cathepsin K in osteoclast function and human disease. Current Molecular Medicine, 2(5), 407–421. https://doi.org/10.2174/1566524023362401
  • Mujawar, Q., Naganoor, R., Patil, H., Thobbi, A. N., Ukkali, S., & Malagi, N. (2009). Pycnodysostosis with unusual findings: A case report. Cases Journal, 2, 6544. https://doi.org/10.4076/1757-1626-2-6544
  • Naeem, M., Sheikh, S., & Ahmad, W. (2009). A mutation in CTSK gene in an autosomal recessive pycnodysostosis family of Pakistani origin. BMC Medical Genetics, 10(1), 1–5. https://doi.org/10.1186/1471-2350-10-76
  • Nailwal, M., & Chauhan, J. B. (2017). Analysis of consequences of non-synonymous SNPs of USP9Y gene in human using bioinformatics tools. Meta Gene, 12, 13–17. https://doi.org/10.1016/j.mgene.2016.12.011
  • Nithya, S. R., Madhana Priya, N. K., Charles Emmanuel Jebaraj, W., & Magesh, R. (2022). Analyzing the effect of deleterious non-synonymous SNPs causing CHARGE syndrome associated with the CHD7 protein using computational approaches. Journal of Proteins and Proteomics, 13, 63–77. https://doi.org/10.1007/s42485-021-00082-x
  • Pereira, D. A., Aytés, L. B., & Escoda, C. G. (2008). Pycnodysostosis. A report of 3 clinical cases. Medicina Oral, Patologia Oral, Cirugia Bucal, 13, 633–635.
  • Priyanka, K., Madhana Priya, N., & Magesh, R. (2021). A computational approach to analyse the amino acid variants of GLB1 protein causing GM1 Gangliosidosis. Metabolic Brain Disease, 36(3), 499–508. https://doi.org/10.1007/s11011-020-00650-y
  • Qureshi, S., Bibi, N., Ahmed, J., & Khan, M. J. (2021). Computational screening of pathogenic non-synonymous SNPs of the human TEX11 gene and their structural and functional consequences. Meta Gene, 28, 100874. https://doi.org/10.1016/j.mgene.2021.100874
  • Rajith, B. (2011). Path to facilitate the prediction of functional amino acid substitutions in red blood cell disorders - A computational approach. PLoS One, 6(9), e24607. https://doi.org/10.1371/journal.pone.0024607
  • Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., Serrano, L., & Rousseau, F. (2004). SNPeffect: A database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic Acids Research. 33(Database issue), D527–D532. https://doi.org/10.1093/nar/gki086
  • Rodrigues, C., Gomes, F. A., Arruda, J. A., Silva, L., Álvares, P., da Fonte, P., Sobral, A. P., & Silveira, M. (2017). Clinical and radiographic features of pycnodysostosis: A case report. Journal of Clinical and Experimental Dentistry, 9(10), e1276–e1281. https://doi.org/10.4317/jced.54105
  • Sadr, A. S., Eslahchi, C., Ghassempour, A., & Kiaei, M. (2021). In silico studies reveal structural deviations of mutant profilin-1 and interaction with riluzole and edaravone in amyotrophic lateral sclerosis. Scientific Reports, 11(1), 14. https://doi.org/10.1038/s41598-021-86211-4
  • Sait, H., Srivastava, P., Gupta, N., Kabra, M., Kapoor, S., Ranganath, P., Rungsung, I., Mandal, K., Saxena, D., Dalal, A., Roy, A., Pabbati, J., & Phadke, S. R. (2021). Phenotypic and genotypic spectrum of CTSK variants in a cohort of twenty-five Indian patients with pycnodysostosis. European Journal of Medical Genetics, 64(7), 104235. https://doi.org/10.1016/j.ejmg.2021.104235
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal : EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schüttelkopf, A. W. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 10, 1214–1221. https://doi.org/10.1002/humu.21031
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Seifi, M., & Walter, M. A. (2018). Accurate prediction of functional, structural, and stability changes in PITX2 mutations using in silico bioinformatics algorithms. Plos One, 13(4), e0195971. https://doi.org/10.1371/journal.pone.0195971
  • Serap, T. (2014). Current research on pycnodysostosis. Intractable & Rare Diseases Research, 3, 91–93. https://doi.org/10.5582/irdr.2014.01014
  • Shalev, M., & Elson, A. (2019). The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts. Biochimica et Biophysica Acta. Molecular Cell Research, 1866(1), 114–123. https://doi.org/10.1016/j.bbamcr.2018.07.005
  • Singh, A., Cuevas-Covarrubias, S., Pradhan, G., Gautam, V. K., Messina-Baas, O., Gonzalez-Huerta, L. M., Goyal, M., & Kapoor, S. (2015). Novel mutation and white matter involvement in an Indian child with pycnodysostosis. Indian Journal of Pediatrics, 82(5), 471–473. https://doi.org/10.1007/s12098-014-1582-5
  • Sundarrajan, S., Nandakumar, M. P., Prabhu, D., Jeyaraman, J., & Arumugam, M. (2020). Conformational insights into the inhibitory mechanism of phyto-compounds against Src kinase family members implicated in psoriasis. Journal of Biomolecular Structure & Dynamics, 38(5), 1398–1414. https://doi.org/10.1080/07391102.2019.1605934
  • Tanwar, H., Kumar, D. T., Doss, C. G. P., & Zayed, H. (2019). Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA. Metabolic Brain Disease, 34(6), 1577–1594. https://doi.org/10.1007/s11011-019-00465-6
  • Thirumal Kumar, D., Jain, N., Evangeline, J., Kamaraj, B., Siva, R., Zayed, H., & George Priya Doss, C. (2019). A computational approach for investigating the mutational landscape of RAC-alpha serine/threonine-protein kinase (AKT1) and screening inhibitors against the oncogenic E17K mutation causing breast cancer. Computers in Biology and Medicine, 115, 103513. https://doi.org/10.1016/j.compbiomed.2019.103513
  • Toral-López, J., Gonzalez-Huerta, L. M., Sosa, B., Orozco, S., González, H. P., & Cuevas-Covarrubias, S. A. (2011). Familial pycnodysostosis: Identification of a novel mutation in the CTSK gene (cathepsin K). Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 59(2), 277–280. https://doi.org/10.2310/JIM.0b013e318202a9db
  • Wang, H., Matsuhashi, H., Doan, B. D., Goodman, S. N., Ouyang, X., & Clark, W. M. (2009). Large-scale synthesis of SB-462795, a cathepsin K inhibitor: The RCM-based approaches. Tetrahedron, 65(32), 6291–6303. https://doi.org/10.1016/j.tet.2009.06.022
  • Xue, Y., Wang, L., Xia, D., Li, Q., Gao, S., Dong, M., Cai, T., Shi, S., He, L., Hu, K., Mao, T., & Duan, X. (2015). Dental abnormalities caused by novel compound heterozygous CTSK mutations. Journal of Dental Research, 94(5), 674–681. https://doi.org/10.1177/0022034515573964

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.