102
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Cyanobacterial compound Tolyporphine K as an inhibitor of Apo-PBP (penicillin-binding protein) in A. baumannii and its ADME assessment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 4133-4144 | Received 28 Feb 2023, Accepted 22 May 2023, Published online: 01 Jun 2023

References

  • Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2020). Acinetobacter baumannii efflux pumps and antibiotic resistance. Infection and Drug Resistance, 13, 423–434. https://doi.org/10.2147/IDR.S228089
  • Adams, D. G., & Duggan, P. S. (2008). Cyanobacteria–bryophyte symbioses. Journal of Experimental Botany, 59(5), 1047–1058. https://doi.org/10.1093/JXB/ERN005
  • Afeke, I., Adu-Amankwaah, J., Nyarko, M., Bushi, A., Ablordey, A. S., Duah, P. A., I Wowui, P., & Orish, V. N. (2022). Acinetobacter baumannii-induced infective endocarditis: New insights into pathophysiology and antibiotic resistance mechanisms. Future Microbiology, 17(16), 1335–1344. https://doi.org/10.2217/fmb-2021-0279
  • Almutairi, M. M. (2022). Synergistic activities of colistin combined with other antimicrobial agents against colistin-resistant Acinetobacter baumannii clinical isolates. Plos One, 17(7), e0270908. https://doi.org/10.1371/journal.pone.0270908
  • Alves, M. J., Froufe, H. J. C., Costa, A. F. T., Santos, A. F., Oliveira, L. G., Osório, S. R. M., Abreu, R. M. V., Pintado, M., & Ferreira, I. C. F. R. (2014). Docking studies in target proteins involved in antibacterial action mechanisms: Extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules (Basel, Switzerland), 19(2), 1672–1684. https://doi.org/10.3390/molecules19021672
  • Ashok Reddy, G. V., Dileep, C. S., Kumar, S., Vrushabendra, B., Srikantamurthy, N., & Doreswamy, B. H. (2018). Structural characterization and docking studies of (Z)-N-phenyl benzo hydrazonoyl chloride derivative as promising antimicrobial Acinetobacter baumannii penicillin-binding protein target. Journal of Applicable Chemistry, 7(3), 496-500.
  • Bagińska, N., Cieślik, M., Górski, A., & Jończyk‐matysiak, E. (2021). The role of antibiotic resistant A. baumannii in the pathogenesis of urinary tract infection and the potential of its treatment with the use of bacteriophage therapy. Antibiotics, 10(3), 281. https://doi.org/10.3390/antibiotics10030281
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Boll, J. M., Crofts, A. A., Peters, K., Cattoir, V., Vollmer, W., Davies, B. W., & Trent, M. S. (2016). A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proceedings of the National Academy of Sciences of the United States of America, 113(41), E6228–E6237. https://doi.org/10.1073/pnas.1611594113
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
  • Carpine, R., & Sieber, S. (2021). Antibacterial and antiviral metabolites from cyanobacteria: Their application and their impact on human health. Current Research in Biotechnology, 3, 65–81. https://doi.org/10.1016/j.crbiot.2021.03.001
  • Cayô, R., Rodríguez, M. C., Espinal, P., Fernández-Cuenca, F., Ocampo-Sosa, A. A., Pascual, Á., Ayala, J. A., Vila, J., & Martínez-Martínez, L. (2011). Analysis of genes encoding penicillin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 55(12), 5907–5913. https://doi.org/10.1128/AAC.00459-11
  • Chaubey, M. G., Patel, S. N., Rastogi, R. P., Srivastava, P. L., Singh, A. K., Madamwar, D., & Singh, N. K. (2019). Therapeutic potential of cyanobacterial pigment protein phycoerythrin: In silico and in vitro study of BACE1 interaction and in vivo Aβ reduction. International Journal of Biological Macromolecules, 134, 368–378. https://doi.org/10.1016/J.IJBIOMAC.2019.05.006
  • Chauhan, A., & Jindal, T. (2020). Microbiological methods for environment, food and pharmaceutical analysis. In Microbiological methods for environment, food and pharmaceutical analysis. Springer International Publishing. https://doi.org/10.1007/978-3-030-52024-3
  • Crnkovic, C. M., May, D. S., & Orjala, J. (2018). The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. Journal of Applied Phycology, 30(1), 375–384. https://doi.org/10.1007/s10811-017-1275-3
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dimri, A., Prasad, R., Chauhan, A., & Ijep, M. A. & 2018, U. (2018). Characterization of soil actinomycete isolate against gram-positive and gram-negative food borne bacteria. Indian Journal Environmental Protection, 38(12), 1004–1015.
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Ghavami, A., Labbé, G., Brem, J., Goodfellow, V. J., Marrone, L., Tanner, C. A., King, D. T., Lam, M., Strynadka, N. C. J., Pillai, D. R., Siemann, S., Spencer, J., Schofield, C. J., & Dmitrienko, G. I. (2015). Assay for drug discovery: Synthesis and testing of nitrocefin analogues for use as β-lactamase substrates. Analytical Biochemistry, 486, 75–77. https://doi.org/10.1016/j.ab.2015.06.032
  • Gopi, P., Gurnani, M., Singh, S., Sharma, P., & Pandya, P. (2022). Structural aspects of SARS-CoV-2 mutations: Implications to plausible infectivity with ACE-2 using computational modeling approach. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2108901
  • Gopi, P., Singh, S., Islam, M. M., Yadav, A., Gupta, N., & Pandya, P. (2022). Thermodynamic and structural profiles of multi-target binding of vinblastine in solution. Journal of Molecular Recognition, 35(12), e2989. https://doi.org/10.1002/jmr.2989
  • Hirokawa, Y., Matsuo, S., Hamada, H., Matsuda, F., & Hanai, T. (2017). Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution. Microbial Cell Factories, 16(212). https://doi.org/10.1186/s12934-017-0824-4
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ibrahim, S., Al-Saryi, N., Al-Kadmy, I. M. S., & Aziz, S. N. (2021). Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology Reports, 48(10), 6987–6998. https://doi.org/10.1007/S11033-021-06690-6
  • Ibrahim, M., Zango, U., Shawai, S. A., & Shamsuddin, I. (2019). A review on beta-lactam antibiotic drug resistance. Drug Design, Development and Therapy, 3(2), 52–58. https://www.researchgate.net/publication/333747941_MOJDDT-03-00080
  • Jarrahpour, A.,Motamedifar, M.,Zarei, M.,Youssoufi, M. H.,Mimouni, M.,Chohan, Z. H., &Hadda, T. B. (2010). Petra, Osiris, and Molinspiration Together as a Guide in Drug Design: Predictions and Correlation Structure/Antibacterial Activity Relationships of New N-Sulfonyl Monocyclic β-Lactams. Phosphorus, Sulfur, and Silicon and the Related Elements, 185(2), 491–497. 10.1080/10426500902953953
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/JCC.20945
  • Karakonstantis, S. (2021). A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. Journal of Chemotherapy, 33(1), 1–11. https://doi.org/10.1080/1120009X.2020.1794393
  • Kaushik, P., Garima, Chauhan, A., & Goyal, P. (2009). Screening of Lyngbya majuscula for potential antibacterial activity and HPTLC analysis of active methanolic extract. Journal of Pure and Applied Microbiology, 3(1), 169–174. https://sci-hub.ren/https://www.cabdirect.org/cabdirect/abstract/20093148754
  • Lenhard, J. R., & Bulman, Z. P. (2019). Inoculum effect of β-lactam antibiotics. The Journal of Antimicrobial Chemotherapy, 74(10), 2825–2843. https://doi.org/10.1093/JAC/DKZ226
  • Lima, L. M., da Silva, B. N. M., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European Journal of Medicinal Chemistry, 208, 112829. https://doi.org/10.1016/J.EJMECH.2020.112829
  • Lin, M.-F., & Lan, C.-Y. (2014). Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World Journal of Clinical Cases, 2(12), 787–814. https://doi.org/10.12998/wjcc.v2.i12.787
  • Liu, H., & Hou, T. (2016). CaFE: A tool for binding affinity prediction using end-point free energy methods. Bioinformatics (Oxford, England), 32(14), 2216–2218. https://doi.org/10.1093/bioinformatics/btw215
  • Liu, X., Wu, X., Tang, J., Zhang, L., & Jia, X. (2020). Trends and development in the antibiotic-resistance of Acinetobacter baumannii: A scientometric research study (1991–2019). Infection and Drug Resistance, 13, 3195–3208. https://doi.org/10.2147/idr.s264391
  • Mahmoud, A., Afifi, M. M., El Shenawy, F., Salem, W., & Elesawy, B. H. (2021). Syzygium aromaticum extracts as a potential antibacterial inhibitors against clinical isolates of Acinetobacter baumannii: An in-silico-supported in-vitro study. Antibiotics, 10(9), 1062. https://doi.org/10.3390/antibiotics10091062
  • ModWeb. (2022). Retrieved November 16 from https://modbase.compbio.ucsf.edu/modweb/
  • Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019). The mechanisms of disease caused by Acinetobacter baumannii. Frontiers in Microbiology, 10(JULY), 1601. https://doi.org/10.3389/fmicb.2019.01601
  • Moubareck, C. A., & Halat, D. H. (2020). Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics, 9(3), 119. https://doi.org/10.3390/antibiotics9030119
  • Mustafa, G., Mehmood, R., Mahrosh, H. S., Mehmood, K., & Ahmed, S. (2022). Investigation of plant antimicrobial peptides against selected pathogenic bacterial species using a peptide-protein docking approach. BioMed Research International, 2022, 1077814. https://doi.org/10.1155/2022/1077814
  • Nasr, P. (2020). Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii. The Journal of Hospital Infection, 104 (1), 4–11. https://doi.org/10.1016/j.jhin.2019.09.021
  • Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD: A parallel, object-oriented molecular dynamics program. The International Journal of Supercomputer Applications and High Performance Computing, 10(4), 251–268. https://doi.org/10.1177/109434209601000401
  • Nunnery, J. K., Mevers, E., & Gerwick, W. H. (2010). Biologically active secondary metabolites from marine cyanobacteria. Current Opinion in Biotechnology, 21(6), 787–793. https://doi.org/10.1016/J.COPBIO.2010.09.019
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(10), 33. https://doi.org/10.1186/1758-2946-3-33
  • O'Donnell, T. J., Gurr, J. R., Dai, J., Taniguchi, M., Williams, P. G., & Lindsey, J. S. (2021). Tolyporphins A-R, unusual tetrapyrrole macrocycles in a cyanobacterium from micronesia, assessed quantitatively from the culture HT-58-2. New Journal of Chemistry, 45(26), 11481–11494. https://doi.org/10.1039/D1NJ02108G
  • Ong, J. Y., Wang, C. H., Tsai, Y. S., Chen, F. L., Lee, C. H., & Ou, T. Y. (2022). Nosocomial septicemia in COVID-19 nosocomial K. pneumoniae, A. baumannii, and Elizabethkingia meningoseptica septicemia in a patient of COVID-19. The Journal of Infection, 85(1), 90–122. https://doi.org/10.1016/j.jinf.2022.04.004
  • Page, M. G. P. (2012). Beta-lactam antibiotics. Antibiotic Discovery and Development, 79–117. https://doi.org/10.1007/978-1-4614-1400-1_3
  • Pandey, U., & Mishra, A. (2019). A protein-ligand interaction of cyanobacterial toxin microcystin lr, a novel inhibitor of bacterial pathogen. Journal of Scientific Research, 63, 115–126.
  • Paramita, D. A., Khairina., & N. Z., Lubis. (2022). Bacterial colonization in atopic dermatitis. Bali Medical Journal, 11(3), 1924–1929. https://doi.org/10.15562/bmj.v11i3.3811
  • Park, J. Y., Kim, S., Kim, S. M., Cha, S. H., Lim, S. K., & Kim, J. (2011). Complete genome sequence of multidrug-resistant Acinetobacter baumannii strain 1656-2, which forms sturdy biofilm. Journal of Bacteriology, 193(22), 6393–6394. https://doi.org/10.1128/JB.06109-11
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rahman, M. M., Saha, T., Islam, K. J., Suman, R. H., Biswas, S., Rahat, E. U., Hossen, M. R., Islam, R., Hossain, M. N., Mamun, A. A., Khan, M., Ali, M. A., & Halim, M. A. (2021). Virtual screening, molecular dynamics and structure-activity relationship studies to identify potent approved drugs for Covid-19 treatment. Journal of Biomolecular Structure & Dynamics, 39(16), 6231–6241. https://doi.org/10.1080/07391102.2020.1794974
  • Skariyachan, S., Manjunath, M., & Bachappanavar, N. (2019). Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii–insights from molecular docking, molecular dynamic simulations and in vitro assays. Journal of Biomolecular Structure & Dynamics, 37(5), 1146–1169. https://doi.org/10.1080/07391102.2018.1451387
  • Soltani, N., Khavari-Nejad, R. A., Yazdi, M. T., Shokravi, S., & Fern A Andez-Valiente, E. (2005). Screening of soil cyanobacteria for antifungal and antibacterial activity. Pharmaceutical Biology, 43(5), 455–459. https://doi.org/10.1080/13880200590963871
  • Tan, L. T., & Phyo, M. Y. (2020). Marine cyanobacteria: A source of lead compounds and their clinically-relevant molecular targets. Molecules, 25(9), 2197. https://doi.org/10.3390/molecules25092197
  • Tiwari, V., Nagpal, I., Subbarao, N., & Moganty, R. R. (2012). In-silico modeling of a novel OXA-51 from β-lactam-resistant Acinetobacter baumannii and its interaction with various antibiotics. Journal of Molecular Modeling, 18(7), 3351–3361. https://doi.org/10.1007/s00894-011-1346-3
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA–NA. https://doi.org/10.1002/jcc.21334
  • Weinberg, S. E., Villedieu, A., Bagdasarian, N., Karah, N., Teare, L., & Elamin, W. F. (2020). Control and management of multidrug resistant Acinetobacter baumannii: A review of the evidence and proposal of novel approaches. Infection Prevention in Practice, 2(3), 100077. https://doi.org/10.1016/J.INFPIP.2020.100077
  • Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments – MDPI, 7(2), 13. https://doi.org/10.3390/environments7020013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.