301
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacoinformatics approach for the screening of Kovidra (Bauhinia variegata) phytoconstituents against tumor suppressor protein in triple negative breast cancer

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4263-4282 | Received 12 Dec 2022, Accepted 25 May 2023, Published online: 08 Jun 2023

References

  • Abbas, T., & Dutta, A. (2009). p21 in cancer: Intricate networks and multiple activities. Nature Reviews. Cancer, 9(6), 400–414. https://doi.org/10.1038/nrc2657
  • Afshari, H., Nourbakhsh, M., Salehi, N., Mahboubi-Rabbani, M., Zarghi, A., & Noori, S. (2020). STAT3-mediated Apoptotic-enhancing Function of Sclareol Against Triple negative breast cancer Cells and Cell Sensitization to Cyclophosphamide. Iranian Journal of Pharmaceutical Research: IJPR, 19(1), 398–412. https://doi.org/10.22037/ijpr.2020.112587.13843
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/PROT.340170408
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263.https://doi.org/10.1093/nar/gky318.PMID:29718510;PMCID:PMC6031011
  • Bauer, M. R., Krämer, A., Settanni, G., Jones, R. N., Ni, X., Khan Tareque, R., Fersht, A. R., Spencer, J., & Joerger, A. C. (2020). Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: The Y220X Paradigm. ACS Chemical Biology, 15(3), 657–668. https://doi.org/10.1021/acschembio.9b00748
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. Epub 2016 May 13. PMID: 27182629; PMCID: PMC4910824. https://doi.org/10.1016/j.addr.2016.05.007
  • Bergamaschi, D., Samuels, Y., O'Neil, N. J., Trigiante, G., Crook, T., Hsieh, J. K., O'Connor, D. J., Zhong, S., Campargue, I., Tomlinson, M. L., Kuwabara, P. E., & Lu, X. (2003). iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nature Genetics, 33(2), 162–167. https://doi.org/10.1038/ng1070
  • Bhaskar, B. (2013). Free radical scavenging activity of bark extracts of Bauhinia variegata L. Asian Journal of Biomedical and Pharmaceutical Sciences, 3(22), 9.
  • Bianchini, G., Balko, J. M., Mayer, I. A., Sanders, M. E., & Gianni, L. (2016). Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nature Reviews. Clinical Oncology, 13(11), 674–690. https://doi.org/10.1038/nrclinonc.2016.66
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.
  • Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: Drugging the p53 pathway. Nature Reviews. Cancer, 9(12), 862–873. https://doi.org/10.1038/nrc2763
  • Cheung, K. L. (2020). Treatment strategies and survival outcomes in triple negative breast cancer. Cancers, 12(3), 735. https://doi.org/10.3390/cancers12030735
  • Christensen, S. B. (2021). Natural products that changed society. Biomedicines, 9(5), 472. https://doi.org/10.3390/biomedicines9050472
  • Conte, F., Sibilio, P., Grimaldi, A. M., Salvatore, M., Paci, P., & Incoronato, M. (2022). In silico recognition of a prognostic signature in basal-like breast cancer patients. PloS One, 17(2), e0264024. Feb 15 PMID: 35167614; PMCID: PMC8846521. https://doi.org/10.1371/journal.pone.0264024
  • Cragg, G. M., & Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice, 25(Suppl. 2), 41–59. https://doi.org/10.1159/000443404
  • Dastidar, S. G., Lane, D. P., & Verma, C. S. (2008). Multiple peptide conformations give rise to similar binding affinities: Molecular simulations of p53-MDM2. Journal of the American Chemical Society, 130(41), 13514–13515. https://doi.org/10.1021/ja804289g
  • Dhahi, R. M. (2019). In Vitro Design of Preclinical Models for Chemotherapy Combinations in Human Breast Tumours. J Clin of Diagn Res, 13(5), FC05–FC08. https://doi.org/10.7860/JCDR/2019/40273/12859
  • Diori Karidio, I., & Sanlier, S. H. (2021). Reviewing cancer’s biology: An eclectic approach. Journal of the Egyptian National Cancer Institute, 33(1), 32. https://doi.org/10.1186/s43046-021-00088-y
  • Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R., & Preissner, R. (2014). ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42, W53–W58. https://doi.org/10.1093/nar/gku401
  • Ferraz da Costa, D. C., Campos, N., Santos, R. A., Guedes-da-Silva, F. H., Martins-Dinis, M., Zanphorlin, L., Ramos, C., Rangel, L. P., & Silva, J. L. (2018). Resveratrol prevents p53 aggregation in vitro and in triple negative breast cancer cells. Oncotarget, 9(49), 29112–29122. https://doi.org/10.18632/oncotarget.25631
  • Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. The New England Journal of Medicine, 363(20), 1938–1948. https://doi.org/10.1056/NEJMra1001389
  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science (New York, N.Y.), 315(5814), 972–976. https://doi.org/10.1126/science.1136800
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Göbel, A., Thiele, S., Browne, A. J., Rauner, M., Zinna, V. M., Hofbauer, L. C., & Rachner, T. D. (2016). Combined inhibition of the mevalonate pathway with statins and zoledronic acid potentiates their anti-tumor effects in human breast cancer cells. Cancer Letters, 375(1), 162–171. https://doi.org/10.1016/j.canlet.2016.03.004
  • Gowtham, H. G., Murali, M., Singh, S. B., Shivamallu, C., Pradeep, S., Shivakumar, C. S., Anandan, S., Thampy, A., Achar, R. R., Silina, E., Stupin, V., Ortega-Castro, J., Frau, J., Flores-Holguín, N., Amruthesh, K. N., Kollur, S. P., & Glossman-Mitnik, D. (2022). Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: Investigations through computational, molecular docking and conceptual DFT studies. PloS One, 17(10), e0275432. https://doi.org/10.1371/journal.pone.0275432
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Haupt, S., Berger, M., Goldberg, Z., & Haupt, Y. (2003). Apoptosis - the p53 network. Journal of Cell Science, 116(Pt 20), 4077–4085. https://doi.org/10.1242/jcs.00739
  • Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387(6630), 296–299. https://doi.org/10.1038/387296a0
  • Hayes, J. M., & Archontis, G. (2012). MM-GB (PB) SA calculations of protein-ligand binding free energies. In Molecular dynamics-studies of synthetic and biological macromolecules (pp. 171–190).
  • Ho, W. C., Fitzgerald, M. X., & Marmorstein, R. (2006). Structure of the p53 core domain dimer bound to DNA. The Journal of Biological Chemistry, 281(29), 20494–20502. https://doi.org/10.1074/jbc.M603634200
  • Hong, B., van den Heuvel, A. P., Prabhu, V. V., Zhang, S., & El-Deiry, W. S. (2014). Targeting TSPp53for cancer therapy: Strategies, challenges and opportunities. Current Drug Targets, 15(1), 80–89. https://doi.org/10.2174/1389450114666140106101412
  • Hu, S., Xu, Y., Meng, L., Huang, L., & Sun, H. (2018). Curcumin inhibits proliferation and promotes apoptosis of triple negative breast cancer cells. Experimental and Therapeutic Medicine, 16(2), 1266–1272. https://doi.org/10.3892/etm.2018.6345
  • Iwakuma, T., & Lozano, G. (2003). MDM2, an introduction. Molecular Cancer Research: MCR, 1(14), 993–1000.
  • Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13(S17), S7. https://doi.org/10.1186/1471-2105-13-S17-S7
  • Joerger, A. C., & Fersht, A. R. (2008). Structural biology of the tumor suppressor p53. Annual Review of Biochemistry, 77, 557–582. https://doi.org/10.1146/annurev.biochem.77.060806.091238
  • Journé, F., Kheddoumi, N., Chaboteaux, C., Duvillier, H., Laurent, G., & Body, J. J. (2008). Extracellular calcium increases bisphosphonate-induced growth inhibition of triple negative breast cancer cells. Triple negative. Breast Cancer Research : BCR, 10(1), R4. https://doi.org/10.1186/bcr1845
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Ketabforoosh, S. H., Kheirollahi, A., Safavi, M., Esmati, N., Ardestani, S. K., Emami, S., Firoozpour, L., Shafiee, A., & Foroumadi, A. (2014). Synthesis and anticancer activity evaluation of new dimethoxylated chalcone and flavanone analogs. Archiv Der Pharmazie, 347(11), 853–860. https://doi.org/10.1002/ardp.201400215
  • Kitayner, M., Rozenberg, H., Kessler, N., Rabinovich, D., Shaulov, L., Haran, T. E., & Shakked, Z. (2006). Structural basis of DNA recognition by p53 tetramers. Molecular Cell, 22(6), 741–753. https://doi.org/10.1016/j.molcel.2006.05.015
  • Koleva, I. I., van Beek, T. A., Linssen, J. P., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis : PCA, 13(1), 8–17. https://doi.org/10.1002/pca.611
  • Konappa, N., Udayashankar, A. C., Krishnamurthy, S., Pradeep, C. K., Chowdappa, S., & Jogaiah, S. (2020). GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Scientific Reports, 10(1), 16438. https://doi.org/10.1038/s41598-020-73442-0
  • Kulkarni, Y. A., & Garud, M. S. (2016). Bauhinia variegata (Caesalpiniaceae) leaf extract: An effective treatment option in type I and type II diabetes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 83, 122–129. https://doi.org/10.1016/j.biopha.2016.06.025
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, F., Ma, F., Wang, Y., Hao, L., Zeng, H., Jia, C., Wang, Y., Liu, P., Ong, I. M., Li, B., Chen, G., Jiang, J., Gong, S., Li, L., & Xu, W. (2017). PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nature Cell Biology, 19(11), 1358–1370. https://doi.org/10.1038/ncb3630
  • Loganayaki, N., Siddhuraju, P., & Manian, S. (2013). Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. Journal of Food Science and Technology, 50(4), 687–695. Aug https://doi.org/10.1007/s13197-011-0389
  • Ma, C., Zu, X., Liu, K., Bode, A. M., Dong, Z., Liu, Z., & Kim, D. J. (2019). Knockdown of pyruvate kinase M inhibits cell growth and migration by reducing NF-kB activity in triple-negative breast cancer cells. Molecules and Cells, 42(9), 628–636. https://doi.org/10.14348/molcells.2019.0038
  • Mattio, L. M., Catinella, G., Pinto, A., & Dallavalle, S. (2020). Natural and nature-inspired stilbenoids as antiviral agents. European Journal of Medicinal Chemistry, 202, 112541. https://doi.org/10.1016/j.ejmech.2020.112541
  • Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., Davidson, S. M., Bauer, M. R., Lau, A. N., Ji, B. W., Dixit, P. D., Hosios, A. M., Muir, A., Chin, C. R., Freinkman, E., Jacks, T., Wolpin, B. M., Vitkup, D., & Vander Heiden, M. G. (2016). Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science (New York, N.Y.), 353(6304), 1161–1165. https://doi.org/10.1126/science.aaf5171
  • Menichini, P., Monti, P., Speciale, A., Cutrona, G., Matis, S., Fais, F., Taiana, E., Neri, A., Bomben, R., Gentile, M., Gattei, V., Ferrarini, M., Morabito, F., & Fronza, G. (2021). Antitumor effects of PRIMA-1 and PRIMA-1Met (APR246) in hematological malignancies: Still a mutant P53-dependent affair? Cells, 10(1), 98. https://doi.org/10.3390/cells10010098PMID:33430525;PMCID:PMC7827888
  • Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236
  • Mir, M. A., Bashir, N., Alfaify, A., & Oteef, M. D. (2020). GC-MS analysis of Myrtus communis extract and its antibacterial activity against Gram-positive bacteria. BMC Complementary Medicine and Therapies, 20(1), 1–9. https://doi.org/10.1186/s12906-020-2863-3
  • More-Adate, P., Lokhande, K. B., Swamy, K. V., Nagar, S., & Baheti, A. (2022). GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Computers in Biology and Medicine, 147, 105679. https://doi.org/10.1016/j.compbiomed.2022.105679
  • Nagpal, N., Goyal, S., Dhanjal, J. K., Ye, L., Kaul, S. C., Wadhwa, R., Chaturvedi, R., & Grover, A. (2017). Molecular dynamics-based identification of novel natural mortalin-p53 abrogators as anticancer agents. Journal of Receptor and Signal Transduction Research, 37(1), 8–16. https://doi.org/10.3109/10799893.2016.1141952
  • Nerdy, N., Lestari, P., Sinaga, J. P., Ginting, S., Zebua, N. F., Mierza, V., & Bakri, T. K. (2021). Brine shrimp (Artemia salina Leach.) lethality test of ethanolic extract from green betel (Piper betle Linn.) and red betel (Piper crocatum Ruiz and Pav.) through the soxhletation method for cytotoxicity test. Open Access Macedonian Journal of Medical Sciences, 9(A), 407–412. https://oamjms.eu/index.php/mjms/article/view/6171 https://doi.org/10.3889/oamjms.2021.6171
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Nishikawa, S., & Iwakuma, T. (2023). Drugs targeting p53 mutations with FDA approval and in clinical trials. Cancers, 15(2), 429. https://doi.org/10.3390/cancers15020429
  • Oren, M. (2003). Decision making by p53: Life, death and cancer. Cell Death and Differentiation, 10(4), 431–442. https://doi.org/10.1038/sj.cdd.4401183
  • Ou, Y., Wang, S. J., Jiang, L., Zheng, B., & Gu, W. (2015). p53 Protein-mediated regulation of phosphoglycerate dehydrogenase (PHGDH) is crucial for the apoptotic response upon serine starvation. The Journal of Biological Chemistry, 290(1), 457–466. https://doi.org/10.1074/jbc.M114.616359
  • Padhi, S., Masi, M., Chourasia, R., Rajashekar, Y., Rai, A. K., & Evidente, A. (2021). ADMET profile and virtual screening of plant and microbial natural metabolites as SARS-CoV-2 S1 glycoprotein receptor binding domain and main protease inhibitors. European Journal of Pharmacology, 890, 173648. https://doi.org/10.1016/j.ejphar.2020.173648
  • Pan, S. Y., Zhou, S. F., Gao, S. H., Yu, Z. L., Zhang, S. F., Tang, M. K., Sun, J. N., Ma, D. L., Han, Y. F., Fong, W. F., & Ko, K. M. (2013). New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evidence-Based Complementary and Alternative Medicine : eCAM, 2013, 627375. https://doi.org/10.1155/2013/627375
  • Pan, W., Yang, H., Cao, C., Song, X., Wallin, B., Kivlin, R., Lu, S., Hu, G., Di, W., & Wan, Y. (2008). AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncology Reports, 20(6), 1553–1559.
  • Pan, Y., Gao, D., & Zhan, C. G. (2008). Modeling the catalysis of anti-cocaine catalytic antibody: Competing reaction pathways and free energy barriers. Journal of the American Chemical Society, 130(15), 5140–5149. https://doi.org/10.1021/ja077972s
  • Pandey, S. (2013). Ethno-pharmacological review of Bauhinia variegata: A potential herbal drug. Research Review: Journal of Herbal Science, 2(2), 6–11.
  • Pandey, S. (2015). Preliminary phytochemical screening and in vitro antibacterial activity of Bauhinia variegata Linn. against human pathogens. Asian Pacific Journal of Tropical Disease, 5(2), 123–129. https://doi.org/10.1016/S2222-1808(14)60639-3
  • Pandey, S. (2017). In vivo antitumor potential of extracts from different parts of Bauhinia variegata Linn. Against b16f10 melanoma tumour model in c57bl/6 mice. Applied Cancer Research, 37(1), 1–14. https://doi.org/10.1186/s41241-017-0039-3
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Peng, J., Yang, M., Bi, R., Wang, Y., Wang, C., Wei, X., Zhang, Z., Xie, X., & Wei, W. (2021). Targeting mutated p53 dependency in triple-negative breast cancer cells through CDK7 inhibition. Frontiers in Oncology, 11, 664848. https://doi.org/10.3389/fonc.2021.664848
  • Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698
  • Rajkapoor, B., Jayakar, B., & Murugesh, N. (2004). Sub chronic toxicity of plant extract Bauhinia variegata on rats. Journal of Ecotoxicology & Environmental Monitoring, 14(1), 71–74.
  • Rajkapoor, B., Jayakar, B., Murugesh, N., & Sakthisekaran, D. (2006). Chemoprevention and cytotoxic effect of Bauhinia variegata against N-nitrosodiethylamine induced liver tumors and human cancer cell lines. Journal of Ethnopharmacology, 104(3), 407–409. https://doi.org/10.1016/j.jep.2005.08.074
  • Rasal, N. K., Sonawane, R. B., & Jagtap, S. V. (2020). Potential 2,4-dimethyl-1H-pyrrole-3-carboxamide bearing benzimidazole template: Design, synthesis, in vitro anticancer and in silico ADME study. Bioorganic Chemistry, 97, 103660. https://doi.org/10.1016/j.bioorg.2020.103660
  • Rasul, N., Saleem, B., & Nawaz, R. (1989). Preliminary phytochemical screening of four common plants of family caesalpiniaceae. Pakistan Journal of Pharmaceutical Sciences, 2(1), 55–57.
  • Reuter, S., Eifes, S., Dicato, M., Aggarwal, B. B., & Diederich, M. (2008). Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochemical Pharmacology, 76(11), 1340–1351. https://doi.org/10.1016/j.bcp.2008.07.031
  • Roy, P., & Saikia, B. (2016). Cancer and cure: A critical analysis. Indian Journal of Cancer, 53(3), 441–442. https://doi.org/10.4103/0019-509X.200658
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Scarpetti, L., Oturkar, C. C., Juric, D., Shellock, M., Malvarosa, G., Post, K., Isakoff, S., Wang, N., Nahed, B., Oh, K., Das, G. M., & Bardia, A. (2023, April). Therapeutic role of tamoxifen for triple-negative breast cancer: Leveraging the interaction between ERβ and mutant p53. The Oncologist, 28(4), 358–363. https://doi.org/10.1093/oncolo/oyac281
  • Schrödinger Release 2020–1: Glide, Schrödinger, LLC, 2020.
  • Schrödinger Release 2020–1: Prime, Schrödinger, LLC, 2020.
  • Schrödinger Release 2020–1: Protein Preparation Wizard; Epik, Schrödinger, LLC; Impact, Schrödinger, LLC; Prime, Schrödinger, LLC, 2020.
  • Schuler, M., & Green, D. R. (2001). Mechanisms of p53-dependent apoptosis. Biochemical Society Transactions, 29(Pt 6), 684–688. https://doi.org/10.1042/0300-5127:0290684
  • Shah, H. D., Saranath, D., & Murthy, V. (2022). A molecular dynamics and docking study to screen anti-cancer compounds targeting mutated p53. Journal of Biomolecular Structure & Dynamics, 40(6), 2407–2416. https://doi.org/10.1080/07391102.2020.1839559
  • Shaheen, M., El-Gamal, M., Mousa, A., Mostafa, S., & El-Esnawy, N. (2014). Antiviral activity of Bauhinia variegata extracts against rotavirus in vitro. Current Science International, 3(3), 172–178.
  • Shaikh, M. F., Morano, W. F., Lee, J., Gleeson, E., Babcock, B. D., Michl, J., Sarafraz-Yazdi, E., Pincus, M. R., & Bowne, W. B. (2016). Emerging role of MDM2 as target for anti-cancer therapy: A review. Annals of Clinical and Laboratory Science, 46(6), 627–634.
  • Sharma, N., Sharma, A., Bhatia, G., Landi, M., Brestic, M., Singh, B., Singh, J., Kaur, S., & Bhardwaj, R. (2019). Isolation of phytochemicals from Bauhinia variegata L. bark and their in vitro antioxidant and cytotoxic potential. Antioxidants, 8(10), 492. https://doi.org/10.3390/antiox8100492
  • Solowey, E., Lichtenstein, M., Sallon, S., Paavilainen, H., Solowey, E., & Lorberboum-Galski, H. (2014). Evaluating medicinal plants for anticancer activity. The Scientific World Journal, 2014, 721402. https://doi.org/10.1155/2014/721402
  • Sunilkumar, D., Drishya, G., Chandrasekharan, A., Shaji, S. K., Bose, C., Jossart, J., Perry, J. J. P., Mishra, N., Kumar, G. B., & Nair, B. G. (2020). Oxyresveratrol drives caspase-independent apoptosis-like cell death in MDA-MB-231 breast cancer cells through the induction of ROS. Biochemical Pharmacology, 173, 113724. https://doi.org/10.1016/j.bcp.2019.113724
  • Tariq, A., Mussarat, S., & Adnan, M. (2015). Review on ethnomedicinal, phytochemical and pharmacological evidence of Himalayan anticancer plants. Journal of Ethnopharmacology, 164, 96–119. https://doi.org/10.1016/j.jep.2015.02.003
  • Taylor, W. R., & Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene, 20(15), 1803–1815. https://doi.org/10.1038/sj.onc.1204252
  • Thayyullathil, F., Chathoth, S., Hago, A., Patel, M., & Galadari, S. (2008). Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radical Biology & Medicine, 45(10), 1403–1412. https://doi.org/10.1016/j.freeradbiomed.2008.08.014
  • Tuckerman, M. B. B. J. M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001. https://doi.org/10.1063/1.463137
  • Ullah, M. O., Haque, M., Urmi, K. F., Zulfiker, A. H., Anita, E. S., Begum, M., & Hamid, K. (2013). Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 3(1), 1–7. https://doi.org/10.1016/S2221-1691(13)60015-5
  • Vermeersch, K. A., Wang, L., McDonald, J. F., & Styczynski, M. P. (2014). Distinct metabolic responses of an ovarian cancer stem cell line. BMC Systems Biology, 8(1), 134. https://doi.org/10.1186/s12918-014-0134-y
  • Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310. https://doi.org/10.1038/35042675
  • Wang, R., Chen, Y., Yang, B., Yu, S., Zhao, X., Zhang, C., Hao, C., Zhao, D., & Cheng, M. (2020). Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrrolo[2,3-b]pyridine derivatives as potential anti-tumor agents. Bioorganic Chemistry, 94, 103474. https://doi.org/10.1016/j.bioorg.2019.103474
  • Wang, Y., Liu, J., Jin, X., Zhang, D., Li, D., Hao, F., Feng, Y., Gu, S., Meng, F., Tian, M., Zheng, Y., Xin, L., Zhang, X., Han, X., Aravind, L., & Wei, M. (2017). O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13732–13737. https://doi.org/10.1073/pnas.1704145115
  • Weiskirchen, S., & Weiskirchen, R. (2016). Resveratrol: How much wine do you have to drink to stay healthy? Advances in Nutrition (Bethesda, Md.), 7(4), 706–718. https://doi.org/10.3945/an.115.011627
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Woo, J. H., Kim, Y. H., D Choi, Y. J., Kim, D. G., Lee, K. S., Bae, J. H., Min, D. S., Chang, J. S., Jeong, Y. J., Lee, Y. H., Park, J. W., & Kwon, T. K. (2003). Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis, 24(7), 1199–1208. https://doi.org/10.1093/carcin/bgg082

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.