140
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Searching possible SARS-CoV-2 main protease inhibitors in constituents from herbal medicines using in silico studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4234-4248 | Received 01 Apr 2023, Accepted 23 May 2023, Published online: 22 Jun 2023

References

  • Ahmad, I., Shaikh, M., Surana, S., Ghosh, A., & Patel, H. (2022). p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): emergence of fourth-generation EGFR inhibitor. Journal of Biomolecular Structure and Dynamics, 40(7), 3046–3059. https://doi.org/10.1080/07391102.2020.1844801
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 1–10. https://doi.org/10.1038/srep34984
  • Badavath, V. N., Kumar, A., Samanta, P. K., Maji, S., Das, A., Blum, G., Jha, A., & Sen, A. (2022). Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): A molecular docking, molecular dynamics and structure-activity relationship studies. Journal of Biomolecular Structure & Dynamics, 40(7), 3110–3128. https://doi.org/10.1080/07391102.2020.1845800
  • Bashford, D., & Case, D. A. (2000). Generalized born models of macromolecular solvation effects. Annual Review of Physical Chemistry, 51(1), 129–152. https://doi.org/10.1146/annurev.physchem.51.1.129
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Brand, Y. M., Roa-Linares, V. C., Betancur-Galvis, L. A., Durán-García, D. C., & Stashenko, E. (2016). Antiviral activity of Colombian Labiatae and Verbenaceae family essential oils and monoterpenes on Human Herpes viruses. Journal of Essential Oil Research, 28(2), 130–137. https://doi.org/10.1080/10412905.2015.1093556
  • Chhetri, A., Chettri, S., Rai, P., Mishra, D. K., Sinha, B., & Brahman, D. (2021). Synthesis, characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (Mpro: 6LU7). Journal of Molecular Structure, 1225, 129230. https://doi.org/10.1016/j.molstruc.2020.129230
  • Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • de Souza, L. S., Puziol, L. C., Tosta, C. L., Bittencourt, M. L. F., Santa Ardisson, J., Kitagawa, R. R., Filgueiras, P. R., & Kuster, R. M. (2019). Analytical methods to access the chemical composition of an Euphorbia tirucalli anticancer latex from traditional Brazilian medicine. Journal of Ethnopharmacology, 237, 255–265. https://doi.org/10.1016/j.jep.2019.03.041
  • Duffy, S. (2018). Why are RNA virus mutation rates so damn high? PLoS Biology, 16(8), e3000003. https://doi.org/10.1371/journal.pbio.3000003
  • Fantini, J., Di Scala, C., Chahinian, H., & Yahi, N. (2020). Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 55(5), 105960. https://doi.org/10.1016/j.ijantimicag.2020.105960
  • Gangadevi, S., Badavath, V. N., Thakur, A., Yin, N., De Jonghe, S., Acevedo, O., Jochmans, D., Leyssen, P., Wang, K., Neyts, J., Yujie, T., & Blum, G. (2021). Kobophenol A inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking COVID-19. The Journal of Physical Chemistry Letters, 12(7), 1793–1802. https://doi.org/10.1021/acs.jpclett.0c03119
  • Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  • Ghosh, R., Badavath, V. N., Chowdhuri, S., & Sen, A. (2022). Identification of alkaloids from Terminalia chebula as potent SARS‐CoV‐2 main protease inhibitors: an in silico perspective. ChemistrySelect, 7(14), e202200055. https://doi.org/10.1002/slct.202200055
  • Gómez-Calderón, C., Mesa-Castro, C., Robledo, S., Gómez, S., Bolivar-Avila, S., Diaz-Castillo, F., & Martínez-Gutierrez, M. (2017). Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complementary and Alternative Medicine, 17(1), 1–12. https://doi.org/10.1186/s12906-017-1562-1
  • Gorbalenya, A. E., Baker, S. C., Baric, R., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., & Neuman, B. W. (2020). Severe acute respiratory syndrome-related coronavirus: The species and its viruses–a statement of the Coronavirus Study Group.
  • Gralinski, L. E., & Baric, R. S. (2015). Molecular pathology of emerging coronavirus infections. The Journal of Pathology, 235(2), 185–195. https://doi.org/10.1002/path.4454
  • Hakmi, M., Bouricha, E. M., Kandoussi, I., El Harti, J., & Ibrahimi, A. (2020). Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main protease using molecular docking analysis. Bioinformation, 16(4), 301–306. https://doi.org/10.6026/97320630016301
  • Hatada, R., Okuwaki, K., Mochizuki, Y., Handa, Y., Fukuzawa, K., Komeiji, Y., Okiyama, Y., & Tanaka, S. (2020). Fragment molecular orbital based interaction analyses on COVID-19 main protease − inhibitor N3 complex (PDB ID: 6LU7). Journal of Chemical Information and Modeling, 60(7), 3593–3602. https://doi.org/10.1021/acs.jcim.0c00283
  • Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. The Journal of General Virology, 83(Pt 3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Hu, B., Ge, X., Wang, L.-F., & Shi, Z. (2015). Bat origin of human coronaviruses. Virology Journal, 12(1), 1–10. https://doi.org/10.1186/s12985-015-0422-1
  • Huff, S., Kummetha, I. R., Tiwari, S. K., Huante, M. B., Clark, A. E., Wang, S., Bray, W., Smith, D., Carlin, A. F., Endsley, M., & Rana, T. M. (2022). Discovery and mechanism of SARS-CoV-2 main protease inhibitors. Journal of Medicinal Chemistry, 65(4), 2866–2879. https://doi.org/10.1021/acs.jmedchem.1c00566
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all‐atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jain, R., & Mujwar, S. (2020). Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Structural Chemistry, 31(6), 2487–2499. https://doi.org/10.1007/s11224-020-01605-w
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu, Y., Zhu, C., Hu, T., Du, X., Duan, Y., Yu, J., Yang, X., Yang, X., Yang, K., Liu, X., Guddat, L. W., Xiao, G., Zhang, L., Yang, H., & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural & Molecular Biology, 27(6), 529–532. https://doi.org/10.1038/s41594-020-0440-6
  • Kautz, T. F., & Forrester, N. L. (2018). RNA virus fidelity mutants: A useful tool for evolutionary biology or a complex challenge? Viruses, 10(11), 600. https://doi.org/10.3390/v10110600
  • Ladino Torres, F. R & López Carrillo, L. J. (2016). Estudio Cromatográfico Por HPLC-DAD en Extractos Acetonicos de Las Especies Gnaphalium Elegans, Achyrocline Satureioides y Achyrocline Bogotensis.
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Liu, Y., Grimm, M., Dai, W., Hou, M., Xiao, Z.-X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144. https://doi.org/10.1038/s41401-019-0228-6
  • Marti, G., Eparvier, V., Moretti, C., Prado, S., Grellier, P., Hue, N., Thoison, O., Delpech, B., Guéritte, F., & Litaudon, M. (2010). Antiplasmodial benzophenone derivatives from the root barks of Symphonia globulifera (Clusiaceae). Phytochemistry, 71(8-9), 964–974. https://doi.org/10.1016/j.phytochem.2010.03.008
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Meneses, R., Ocazionez, R. E., Martínez, J. R., & Stashenko, E. E. (2009). Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Annals of Clinical Microbiology and Antimicrobials, 8, 8. https://doi.org/10.1186/1476-0711-8-8
  • Meneses, R., Torres, F. Á., Stashenko, E., & Ocazionez, R. E. (2009). Aceites esenciales de plantas colombianas inactivan el virus del dengue y el virus de la fiebre amarilla. Revista de La Universidad Industrial de Santander. Salud, 41(3), 236–243.
  • Ming, D. S., López, A., Hillhouse, B. J., French, C. J., Hudson, J. B., & Towers, G. H. N. (2002). Bioactive constituents from Iryanthera m egistophylla. Journal of Natural Products, 65(10), 1412–1416. https://doi.org/10.1021/np020169l
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Olivero-Verbel, J., González-Cervera, T., Güette-Fernandez, J., Jaramillo-Colorado, B., & Stashenko, E. (2010). Chemical composition and antioxidant activity of essential oils isolated from Colombian plants. Revista Brasileira de Farmacognosia, 20(4), 568–574. https://doi.org/10.1590/S0102-695X2010000400016
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pooladanda, V., Thatikonda, S., & Godugu, C. (2020). The current understanding and potential therapeutic options to combat COVID-19. Life Sciences, 254, 117765. https://doi.org/10.1016/j.lfs.2020.117765
  • Radke, J. B., Kingery, J. M., Maakestad, J., & Krasowski, M. D. (2019). Diagnostic pitfalls and laboratory test interference after hydroxychloroquine intoxication: A case report. Toxicology Reports, 6, 1040–1046. https://doi.org/10.1016/j.toxrep.2019.10.006
  • Rai, H., Barik, A., Singh, Y. P., Suresh, A., Singh, L., Singh, G., Nayak, U. Y., Dubey, V. K., & Modi, G. (2021). Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: An effort toward drug repurposing to combat COVID-19. Molecular Diversity, 25(3), 1905–1927. https://doi.org/10.1007/s11030-021-10188-5
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Rasul, H. O., Aziz, B. K., Ghafour, D. D., & Kivrak, A. (2022a). Discovery of potential mTOR inhibitors from Cichorium intybus to find new candidate drugs targeting the pathological protein related to the breast cancer: An integrated computational approach. Molecular Diversity, 1–24. https://doi.org/10.1007/s11030-022-10475-9
  • Rasul, H. O., Aziz, B. K., Ghafour, D. D., & Kivrak, A. (2022b). Screening the possible anti-cancer constituents of Hibiscus rosa-sinensis flower to address mammalian target of rapamycin: an in silico molecular docking, HYDE scoring, dynamic studies, and pharmacokinetic prediction. Molecular Diversity, 1–24. https://doi.org/10.1007/s11030-022-10556-9
  • Release, S. (2017). 3: Desmond molecular dynamics system, DE Shaw research, New York, NY, 2017. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY.
  • Ríos, N., Stashenko, E. E., & Duque, J. E. (2017). Evaluation of the insecticidal activity of essential oils and their mixtures against Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia, 61(4), 307–311. https://doi.org/10.1016/j.rbe.2017.08.005
  • Robson, B. (2020). Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Computers in Biology and Medicine, 119, 103670. https://doi.org/10.1016/j.compbiomed.2020.103670
  • Sagawa, T., Takaishi, Y., Fujimoto, Y., Duque, C., Osorio, C., Ramos, F., Garzon, C., Sato, M., Okamoto, M., Oshikawa, T., & Ahmed, S. U. (2005). Cyclobutane dimers from the Colombian medicinal plant achyrocline b ogotensis. Journal of Natural Products, 68(4), 502–505. https://doi.org/10.1021/np040187y
  • Sahraei, Z., Shabani, M., Shokouhi, S., & Saffaei, A. (2020). Aminoquinolines against coronavirus disease 2019 (COVID-19): chloroquine or hydroxychloroquine. International Journal of Antimicrobial Agents, 55(4), 105945. https://doi.org/10.1016/j.ijantimicag.2020.105945
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Saxena, A. (2020). Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of Biosciences, 45(1), 1–24. https://doi.org/10.1007/s12038-020-00067-w
  • Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., Deng, Y., Wang, H., Ye, F., Cen, S., & Tan, W. (2019). High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. Journal of Virology, 93(12) https://doi.org/10.1128/JVI.00023-19
  • Singh, A. K., Singh, A., Shaikh, A., Singh, R., & Misra, A. (2020). Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome, 14(3), 241–246. https://doi.org/10.1016/j.dsx.2020.03.011
  • Sisakht, M., Mahmoodzadeh, A., & Darabian, M. (2021). Plant‐derived chemicals as potential inhibitors of SARS‐CoV‐2 main protease (6LU7), a virtual screening study. Phytotherapy Research : PTR, 35(6), 3262–3274. https://doi.org/10.1002/ptr.7041
  • Srinivasan, B. (2021). Words of advice: Teaching enzyme kinetics. The FEBS Journal, 288(7), 2068–2083. https://doi.org/10.1111/febs.15537
  • Stashenko, E. E., Jaramillo, B. E., & Martínez, J. R. (2004). Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) NE Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. Journal of Chromatography. A, 1025(1), 93–103. https://doi.org/10.1016/j.chroma.2003.10.058
  • Stashenko, E., Ruiz, C., Muñoz, A., Castañeda, M., & Martínez, J. (2008). Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Natural Product Communications, 3(4), 1934578X0800300. https://doi.org/10.1177/1934578X0800300417
  • Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., Zhu, F., Zhang, J. Z. H., & Hou, T. (2018). Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics: PCCP, 20(21), 14450–14460. https://doi.org/10.1039/c7cp07623a
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics: PCCP, 16(31), 16719–16729. https://doi.org/10.1039/c4cp01388c
  • Systèmes, D. (2016). Biovia, discovery studio modeling environment. Dassault Systèmes Biovia.
  • Tang, X., Du, R.-H., Wang, R., Cao, T.-Z., Guan, L.-L., Yang, C.-Q., Zhu, Q., Hu, M., Li, X.-Y., Li, Y., Liang, L.-R., Tong, Z.-H., Sun, B., Peng, P., & Shi, H.-Z. (2020). Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest, 158(1), 195–205. https://doi.org/10.1016/j.chest.2020.03.032
  • Thakur, A., Sharma, G., Badavath, V. N., Jayaprakash, V., Merz, K. M., Jr, Blum, G., & Acevedo, O. (2022). Primer for designing main protease (Mpro) inhibitors of SARS-CoV-2. The Journal of Physical Chemistry Letters, 13(25), 5776–5786. https://doi.org/10.1021/acs.jpclett.2c01193
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Trujillo-Correa, A. I., Quintero-Gil, D. C., Diaz-Castillo, F., Quiñones, W., Robledo, S. M., & Martinez-Gutierrez, M. (2019). In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complementary and Alternative Medicine, 19(1), 16. https://doi.org/10.1186/s12906-019-2695-1
  • Tsang, A. C., Ahmadi, S., Hamilton, J., Gao, J., Virgili, G., Coupland, S. G., & Gottlieb, C. C. (2019). The diagnostic utility of multifocal electroretinography in detecting chloroquine and hydroxychloroquine retinal toxicity. American Journal of Ophthalmology, 206, 132–139. https://doi.org/10.1016/j.ajo.2019.04.025
  • Vijayakumar, M., Janani, B., Kannappan, P., Renganathan, S., Al-Ghamdi, S., Alsaidan, M., Abdelaziz, M. A., Mohideen, A. P., Shahid, M., & Ramesh, T. (2022). In silico identification of potential inhibitors against main protease of SARS-CoV-2 6LU7 from Andrographis panniculata via molecular docking, binding energy calculations and molecular dynamics simulation studies. Saudi Journal of Biological Sciences, 29(1), 18–29. https://doi.org/10.1016/j.sjbs.2021.10.060
  • Wölfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Müller, M. A., Niemeyer, D., Jones, T. C., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Brünink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., & Wendtner, C. (2020). Virological assessment of hospitalized patients with COVID-2019. Nature, 581(7809), 465–469. https://doi.org/10.1038/s41586-020-2196-x
  • Woo, P. C. Y., Lau, S. K. P., Lam, C. S. F., Lau, C. C. Y., Tsang, A. K. L., Lau, J. H. N., Bai, R., Teng, J. L. L., Tsang, C. C. C., Wang, M., Zheng, B.-J., Chan, K.-H., & Yuen, K.-Y. (2012). Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavi. Journal of Virology, 86(7), 3995–4008. https://doi.org/10.1128/JVI.06540-11
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xu, L., Sun, H., Li, Y., Wang, J., & Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry. B, 117(28), 8408–8421. https://doi.org/10.1021/jp404160y
  • Yao, T., Qian, J., Zhu, W., Wang, Y., & Wang, G. (2020). A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease‐19 treatment option. Journal of Medical Virology, 92(6), 556–563. https://doi.org/10.1002/jmv.25729
  • Zhao, Y. H., Abraham, M. H., Le, J., Hersey, A., Luscombe, C. N., Beck, G., Sherborne, B., & Cooper, I. (2002). Rate-limited steps of human oral absorption and QSAR studies. Pharmaceutical Research, 19(10), 1446–1457. https://doi.org/10.1023/a:1020444330011
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.