119
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A new horizon in the phosphorylated sites of AGA: the structural impact of C163S mutation in aspartylglucosaminuria through molecular dynamics simulation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4313-4324 | Received 18 Mar 2023, Accepted 28 May 2023, Published online: 19 Jun 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Akhunzada, M. J., Yoon, H. J., Deb, I., Braka, A., & Wu, S. (2022). Bell-Evans model and steered molecular dynamics in uncovering the dissociation kinetics of ligands targeting G-protein-coupled receptors. Scientific Reports, 12(1), 15972. https://doi.org/10.1038/s41598-022-20065-2
  • Ali, S., Khan, F. I., Mohammad, T., Lan, D., Hassan, Md. I., & Wang, Y. (2019). Identification and Evaluation of Inhibitors of Lipase from Malassezia restricta using Virtual High-Throughput Screening and Molecular Dynamics Studies. International Journal of Molecular Sciences, 20(4), 884. https://doi.org/10.3390/ijms20040884
  • Almeida, V. M., Dias, Ê. R., Souza, B. C., Cruz, J. N., Santos, C. B. R., Leite, F. H. A., Queiroz, R. F., & Branco, A. (2022). Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: In vitro and in silico assays. Journal of Biomolecular Structure & Dynamics, 40(16), 7574–7583. https://doi.org/10.1080/07391102.2021.1900916
  • Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O'Donovan, C., Redaschi, N., & Yeh, L.-S. L. (2004). UniProt: The Universal Protein knowledgebase. Nucleic Acids Research, 32(Database issue), D115–D119. https://doi.org/10.1093/nar/gkh131
  • Ardalan, N., Mirzaie, S., Sepahi, A. A., & Khavari-Nejad, R. A. (2018). Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies. Medical Hypotheses, 112, 7–17. https://doi.org/10.1016/j.mehy.2018.01.004
  • Arvio, M., & Mononen, I. (2016). Aspartylglycosaminuria: A review. Orphanet Journal of Rare Diseases, 11(1), 162. https://doi.org/10.1186/s13023-016-0544-6
  • Arvio, M., Sauna-Aho, O., & Peippo, M. (2001). Bone marrow transplantation for aspartylglucosaminuria: Follow-up study of transplanted and non-transplanted patients. The Journal of Pediatrics, 138(2), 288–290. https://doi.org/10.1067/mpd.2001.110119
  • Arvio, P., & Arvio, M. (2002). Progressive nature of aspartylglucosaminuria. Acta Paediatrica (Oslo, Norway : 1992), 91(3), 255–257. https://doi.org/10.1080/08035250252833842
  • Arvio, P., Arvio, M., & Pirinen, S. (1997). Characteristic dental arches and occlusion in patients with aspartylglucosaminuria. Journal of Craniofacial Genetics and Developmental Biology, 17(3), 133–140.
  • Arvio, P., Arvio, M., Kero, M., Pirinen, S., & Lukinmaa, P. L. (1999). Overgrowth of oral mucosa and facial skin, a novel feature of aspartylglucosaminuria. Journal of Medical Genetics, 36(5), 398–404.
  • Banning, A., Gülec, C., Rouvinen, J., Gray, S. J., & Tikkanen, R. (2016). Identification of small molecule compounds for pharmacological chaperone therapy of aspartylglucosaminuria. Scientific Reports, 6(1), 37583. https://doi.org/10.1038/srep37583
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Chen, X., Snanoudj-Verber, S., Pollard, L., Hu, Y., Cathey, S. S., Tikkanen, R., & Gray, S. J. (2021). Pre-clinical gene therapy with AAV9/AGA in aspartylglucosaminuria mice provides evidence for clinical translation. Molecular Therapy, 29(3), 989–1000. https://doi.org/10.1016/j.ymthe.2020.11.012
  • Condic-Jurkic, K., Subramanian, N., Mark, A. E., & O'Mara, M. L. (2018). The reliability of molecular dynamics simulations of the multidrug transporter P-glycoprotein in a membrane environment. PLoS One, 13(1), e0191882. https://doi.org/10.1371/journal.pone.0191882
  • de Almeida, R. B. M., Barbosa, D. B., do Bomfim, M. R., Amparo, J. A. O., Andrade, B. S., Costa, S. L., Campos, J. M., Cruz, J. N., Santos, C. B. R., Leite, F. H. A., & Botura, M. B. (2023). Identification of a novel dual inhibitor of acetylcholinesterase and butyrylcholinesterase: In vitro and in silico studies. Pharmaceuticals, 16(1), 95. https://doi.org/10.3390/ph16010095
  • Dunder, U., Kaartinen, V., Valtonen, P., Väänänen, E., Kosma, V. M., Heisterkamp, N., Groffen, J., & Mononen, I. (2000). Enzyme replacement therapy in a mouse model of aspartylglycosaminuria. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 14(2), 361–367. https://doi.org/10.1096/fasebj.14.2.361
  • Dunder, U., Valtonen, P., Kelo, E., & Mononen, I. (2010). Early initiation of enzyme replacement therapy improves metabolic correction in the brain tissue of aspartylglycosaminuria mice. Journal of Inherited Metabolic Disease, 33(5), 611–617. https://doi.org/10.1007/s10545-010-9158-7
  • Enomaa, N., Danos, O., Peltonen, L., & Jalanko, A. (1995). Correction of deficient enzyme activity in a lysosomal storage disease, aspartylglucosaminuria, by enzyme replacement and retroviral gene transfer. Human Gene Therapy, 6(6), 723–731. https://doi.org/10.1089/hum.1995.6.6-723
  • Filipe, H. A. L., & Loura, L. M. S. (2022). Molecular dynamics simulations: Advances and applications. Molecules, 27(7), 2105. https://doi.org/10.3390/molecules27072105
  • Fisher, K. J., & Aronson, N. N. (1991). Characterization of the mutation responsible for aspartylglucosaminuria in three Finnish patients. Amino acid substitution Cys163—Ser abolishes the activity of lysosomal glycosylasparaginase and its conversion into subunits. The Journal of Biological Chemistry, 266(18), 12105–12113. https://doi.org/10.1016/S0021-9258(18)99071-X
  • Hoover, N. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Hornbeck, P. V., Kornhauser, J. M., Latham, V., Murray, B., Nandhikonda, V., Nord, A., Skrzypek, E., Wheeler, T., Zhang, B., & Gnad, F. (2019). 15 years of PhosphoSitePlus®: Integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Research, 47(D1), D433–D441. https://doi.org/10.1093/nar/gky1159
  • Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., & Sullivan, M. (2012). PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research, 40(Database issue), D261–D270. https://doi.org/10.1093/nar/gkr1122
  • Ikonen, E., Baumann, M., Grön, K., Syvänen, A. C., Enomaa, N., Halila, R., Aula, P., & Peltonen, L. (1991). Aspartylglucosaminuria: CDNA encoding human aspartylglucosaminidase and the missense mutation causing the disease. The EMBO Journal, 10(1), 51–58. https://doi.org/10.1002/j.1460-2075.1991.tb07920.x
  • Ikonen, E., Enomaa, N., Ulmanen, I., & Peltonen, L. (1991). In vitro mutagenesis helps to unravel the biological consequences of aspartylglucosaminuria mutation. Genomics, 11(1), 206–211. https://doi.org/10.1016/0888-7543(91)90120-4
  • Ikonen, E., Syvänen, A. C., & Peltonen, L. (1993). Dissection of the molecular pathology of aspartylglucosaminuria provides the basis for DNA diagnostics and future therapeutic interventions. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, 213, 19–27. https://doi.org/10.3109/00365519309090670
  • Jo, S., Cheng, X., Islam, S. M., Huang, L., Rui, H., Zhu, A., Lee, H. S., Qi, Y., Han, W., Vanommeslaeghe, K., MacKerell, A. D., Roux, B., & Im, W. (2014). CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. Advances in Protein Chemistry and Structural Biology, 96, 235–265. https://doi.org/10.1016/bs.apcsb.2014.06.002
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kato, K., Nakayoshi, T., Fukuyoshi, S., Kurimoto, E., & Oda, A. (2017). Validation of molecular dynamics simulations for prediction of three-dimensional structures of small proteins. Molecules, 22(10), 1716. https://doi.org/10.3390/molecules22101716
  • Kyttälä, A., Heinonen, O., Peltonen, L., & Jalanko, A. (1998). Expression and endocytosis of lysosomal aspartylglucosaminidase in mouse primary neurons. The Journal of Neuroscience, 18(19), 7750–7756. https://doi.org/10.1523/JNEUROSCI.18-19-07750.1998
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Li, W., Ma, J., Wu, S., Zhang, J., & Cheng, J. (2021). The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: Molecular dynamics simulation study. Polymer Testing, 101, 107275. https://doi.org/10.1016/j.polymertesting.2021.107275
  • Lima, A. d M., Siqueira, A. S., Möller, M. L. S., Souza, R. C. d., Cruz, J. N., Lima, A. R. J., Silva, R. C. d., Aguiar, D. C. F., Junior, J. L. d S. G. V., & Gonçalves, E. C. (2022). In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. Journal of Biomolecular Structure & Dynamics, 40(3), 1064–1073. https://doi.org/10.1080/07391102.2020.1821782
  • Liu, Y., Dunn, G. S., & Aronson, N. N. (1996). Purification, biochemistry and molecular cloning of an insect glycosylasparaginase from Spodoptera frugiperda. Glycobiology, 6(5), 527–536. https://doi.org/10.1093/glycob/6.5.527
  • McCormack, A. L., Mononen, I., Kaartinen, V., & Yates, J. R. (1995). Localization of the disulfide bond involved in post-translational processing of glycosylasparaginase and disrupted by a mutation in the Finnish-type aspartylglycosaminuria. The Journal of Biological Chemistry, 270(7), 3212–3215. https://doi.org/10.1074/jbc.270.7.3212
  • Mononen, I., Fisher, K. J., Kaartinen, V., & Aronson, N. N. (1993). Aspartylglycosaminuria: Protein chemistry and molecular biology of the most common lysosomal storage disorder of glycoprotein degradation. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 7(13). https://doi.org/10.1096/fasebj.7.13.8405810
  • Mukherjee, S., & Bahadur, R. P. (2018). An account of solvent accessibility in protein-RNA recognition. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28373-2
  • Noronkoski, T., Stoineva, I. B., Petkov, D. D., & Mononen, I. (1997). Recombinant human glycosylasparaginase catalyzes hydrolysis of L-asparagine. FEBS Letters, 412(1), 149–152. https://doi.org/10.1016/s0014-5793(97)00761-8
  • Oinonen, C., Tikkanen, R., Rouvinen, J., & Peltonen, L. (1995). Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nature Structural Biology, 2(12), 1102–1108. https://doi.org/10.1038/nsb1295-1102
  • Parra-Cruz, R., Jäger, C. M., Lau, P. L., Gomes, R. L., & Pordea, A. (2018). Rational design of thermostable carbonic anhydrase mutants using molecular dynamics simulations. The Journal of Physical Chemistry B, 122(36), 8526–8536. https://doi.org/10.1021/acs.jpcb.8b05926
  • Peltola, M., Tikkanen, R., Peltonen, L., & Jalanko, A. (1996). Ser72Pro active-site disease mutation in human lysosomal aspartylglucosaminidase: Abnormal intracellular processing and evidence for extracellular activation. Human Molecular Genetics, 5(6), 737–743. https://doi.org/10.1093/hmg/5.6.737
  • Riikonen, A., Rouvinen, J., Tikkanen, R., Julkunen, I., Peltonen, L., & Jalanko, A. (1996). Primary folding of aspartylglucosaminidase. Significance of disulfide bridges and evidence of early multimerization. The Journal of Biological Chemistry, 271(35), 21340–21344. https://doi.org/10.1074/jbc.271.35.21340
  • Saarela, J., Laine, M., Oinonen, C., Jalanko, A., Rouvinen, J., Peltonen, L., & Tikkanen, R. (1998). Activation and oligomerization of aspartylglucosaminidase. The Journal of Biological Chemistry, 273(39), 25320–25328. https://doi.org/10.1074/jbc.273.39.25320
  • Saito, S., Ohno, K., Sugawara, K., Suzuki, T., Togawa, T., & Sakuraba, H. (2008). Structural basis of aspartylglucosaminuria. Biochemical and Biophysical Research Communications, 377(4), 1168–1172. https://doi.org/10.1016/j.bbrc.2008.10.142
  • Silva, L. B., Ferreira, E. F. B., Maryam, Espejo-Román, J. M., Costa, G. V., Cruz, J. V., Kimani, N. M., Costa, J. S., Bittencourt, J. A. H. M., Cruz, J. N., Campos, J. M., & C. B. R., Santos. (2023). Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach. Molecules, 28(3), 1035. https://doi.org/10.3390/molecules28031035
  • Sriroopreddy, R., Raghuraman, P., Sreeshma, J., Kamalesh, D., & Sudandiradoss, C. (2021). Exploring the structural significance of molecular switch mechanism alias motif phosphorylation in Wnt/β-catenin and their crucial role in triple-negative breast cancer. Archives of Biochemistry and Biophysics, 698, 108722. https://doi.org/10.1016/j.abb.2020.108722
  • Sui, L., Lakshminarasimhan, D., Pande, S., & Guo, H.-C. (2014). Structural basis of a point mutation that causes the genetic disease aspartylglucosaminuria. Structure (London, England : 1993), 22(12), 1855–1861. https://doi.org/10.1016/j.str.2014.09.014
  • Tanaka, M., Kono, M., & Yamashina, I. (1973). Specificity studies of 4-L-aspartylglycosylamine amido hydrolase. Journal of Biochemistry, 73(6), 1285–1289. https://doi.org/10.1093/oxfordjournals.jbchem.a130202
  • Tarentino, A. L., & Plummer, T. H. (1993). The first demonstration of a procaryotic glycosylasparaginase. Biochemical and Biophysical Research Communications, 197(1), 179–186. https://doi.org/10.1006/bbrc.1993.2457
  • Tikkanen, R., Enomaa, N., Riikonen, A., Ikonen, E., & Peltonen, L. (1995). Intracellular sorting of aspartylglucosaminidase: The role of N-linked oligosaccharides and evidence of Man-6-P-independent lysosomal targeting. DNA and Cell Biology, 14(4), 305–312. https://doi.org/10.1089/dna.1995.14.305
  • Tikkanen, R., Peltola, M., Oinonen, C., Rouvinen, J., & Peltonen, L. (1997). Several cooperating binding sites mediate the interaction of a lysosomal enzyme with phosphotransferase. The EMBO Journal, 16(22), 6684–6693. https://doi.org/10.1093/emboj/16.22.6684
  • Tikkanen, R., Riikonen, A., Oinonen, C., Rouvinen, R., & Peltonen, L. (1996). Functional analyses of active site residues of human lysosomal aspartylglucosaminidase: Implications for catalytic mechanism and autocatalytic activation. The EMBO Journal, 15(12), 2954–2960. https://doi.org/10.1002/j.1460-2075.1996.tb00658.x
  • Valente, R. P. da P., Souza, R. C. de, de Medeiros Muniz, G., Ferreira, J. E. V., de Miranda, R. M., E Lima, A. H. L., & Vianez Junior, J. L. da S. G. (2020). Using Accelerated Molecular Dynamics Simulation to elucidate the effects of the T198F mutation on the molecular flexibility of the West Nile virus envelope protein. Scientific Reports, 10(1), 9625. https://doi.org/10.1038/s41598-020-66344-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.