63
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential anti-mucor agents by targeting endothelial cell receptor glucose-regulated protein-78 using in silico approach

, , ORCID Icon, , , & ORCID Icon show all
Pages 4344-4355 | Received 22 Dec 2022, Accepted 28 May 2023, Published online: 08 Jun 2023

References

  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/cr040426m
  • Al-Hashimi, A. A., Rak, J., & Austin, R. C. (2018). Cell surface GRP78: A novel regulator of tissue factor procoagulant activity. In Cell Surface GRP78, a new paradigm in signal transduction biology (pp. 63–85). Elsevier.
  • Allam, L., Ghrifi, F., Mohammed, H., El Hafidi, N., El Jaoudi, R., El Harti, J., Lmimouni, B., Belyamani, L., & Ibrahimi, A. (2020). Targeting the GRP78-dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinformatics and Biology Insights, 14, 1177932220965505. https://doi.org/10.1177/1177932220965505
  • Alqarihi, A., Gebremariam, T., Gu, Y., Swidergall, M., Alkhazraji, S., Soliman, S. S. M., Bruno, V. M., Edwards, J. E., Jr, Filler, S. G., Uppuluri, P., & Ibrahim, A. S. (2020). GRP78 and integrins play different roles in host cell invasion during Mucormycosis. mBio, 11(3), e01087-20. https://doi.org/10.1128/mBio.01087-20
  • Ambrosioni, J., Bouchuiguir-Wafa, K., & Garbino, J. (2010). Emerging invasive zygomycosis in a tertiary care center: Epidemiology and associated risk factors. International Journal of Infectious Diseases, 14, 100–103.
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., Iii; Darden, T. A., Duke, R. E., Gohlke, H., Goetz, A. W., Gusarov, S., Homeyer, N., Janowski, P., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T. S., LeGrand, S., … Kollman, P. A. (2014). AMBER14. University of California.
  • Chakrabarti, A., Das, A., Mandal, J., Shivaprakash, M. R., George, V. K., Tarai, B., Rao, P., Panda, N., Verma, S. C., & Sakhuja, V. (2006). The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Medical Mycology, 44(4), 335–342. https://doi.org/10.1080/13693780500464930
  • Chakrabarti, A., Das, A., Sharma, A., Panda, N., Das, S., Gupta, K., & Sakhuja, V. (2001). Ten years’ experience in zygomycosis at a tertiary care centre in India. The Journal of Infection, 42(4), 261–266. https://doi.org/10.1053/jinf.2001.0831
  • Cheatham, T. E., III, Miller, J. L., Fox, T., Darden, T. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle Mesh Ewald Method leads to stable trajectories of DNA, RNA and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Cieplak, P., Cornell, W. D., Bayly, C., & Kollman, P. A. (1995). Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. Journal of Computational Chemistry, 16(11), 1357–1377. https://doi.org/10.1002/jcc.540161106
  • Dallakyan, S., & Olson, A. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Decherchi, S., & Cavalli, A. (2020). Thermodynamics and kinetics of drug-target binding by molecular simulation. Chemical Reviews, 120(23), 12788–12833. https://doi.org/10.1021/acs.chemrev.0c00534
  • Discovery Studio Visualizer Software. (2012). Version 4.0. http://www.accelrys.com
  • Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H., & Shaw, D. E. (2012). Biomolecular simulation: A computational microscope for molecular biology. Annual Review of Biophysics, 41, 429–452. https://doi.org/10.1146/annurev-biophys-042910-155245
  • Duan, L., Guo, X., Cong, Y., Feng, G., Li, Y., & Zhang, J. Z. H. (2019). Accelerated molecular dynamics simulation for helical proteins folding in explicit water. Frontiers in Chemistry, 7, 540. https://doi.org/10.3389/fchem.2019.00540
  • Dubey, K. D., Tiwari, R. K., & Ojha, R. P. (2013). Recent advances in protein-ligand interactions: Molecular dynamics simulations and binding free energy. Current Computer-Aided Drug Design, 9(4), 518–531. https://doi.org/10.2174/15734099113096660036
  • Elfiky, A. A., Baghdady, A. M., Ali, S. A., & Ahmed, M. I. (2020). GRP78 targeting: Hitting two birds with a stone. Life Sciences, 260, 118317. https://doi.org/10.1016/j.lfs.2020.118317
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shaw, D. E., Shelley, M., Perry, J. K., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gebremariam, T., Liu, M., Luo, G., Bruno, V., Phan, Q. T., Waring, A. J., Edwards, J. E., Jr, Filler, S. G., Yeaman, M. R., & Ibrahim, A. S. (2014). CotH3 mediates fungal invasion of host cells during mucormycosis. The Journal of Clinical Investigation, 124(1), 237–250. https://doi.org/10.1172/JCI71349
  • Gething, M. J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355(6355), 33–45. https://doi.org/10.1038/355033a0
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein protein complex Ras-Raf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Gopal, U., & Pizzo, S. V. (2018). The endoplasmic reticulum chaperone GRP78 also functions as a cell surface signaling receptor. In Cell surface GRP78, a new paradigm in signal transduction biology (pp. 9–40). Elsevier.
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Ibrahim, I. M., Abdelmalek, D. H., & Elfiky, A. A. (2019). GRP78: A cell’s response to stress. Life Sciences, 226, 156–163. https://doi.org/10.1016/j.lfs.2019.04.022
  • Joung, I. S., & Cheatham, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry. B, 112(30), 9020–9041. https://doi.org/10.1021/jp8001614
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lazim, R., Suh, D., & Choi, S. (2020). Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. International Journal of Molecular Sciences, 21(17), 6339. https://doi.org/10.3390/ijms21176339
  • Liu, M., Spellberg, B., Phan, Q. T., Fu, Y., Fu, Y., Lee, A. S., Edwards, J. E., Jr, Filler, S. G., & Ibrahim, A. S. (2010). The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. The Journal of Clinical Investigation, 120(6), 1914–1924. https://doi.org/10.1172/JCI42164
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Misra, U. K., Gonzalez-Gronow, M., Gawdi, G., Wang, F., & Pizzo, S. V. (2004). A novel receptor function for the heat shock protein Grp78: Silencing of Grp78 gene expression attenuates alpha2M*-induced signalling. Cellular Signalling, 16(8), 929–938. https://doi.org/10.1016/j.cellsig.2004.01.003
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized born model suitable for macromolecules. The Journal of Physical Chemistry B, 104(15), 3712–3720. https://doi.org/10.1021/jp994072s
  • Pant, P., & Fisher, M. (2020). DNA triplex with conformationally locked sugar disintegrates to duplex: Insights from molecular simulations. Biochemical and Biophysical Research Communications, 532(4), 662–667. https://doi.org/10.1016/j.bbrc.2020.08.097
  • Pant, P., & Fisher, M. M. (2021). Nucleic acid: From double-helical structure to a potent intercalator. Biophysical Chemistry, 269, 106525. https://doi.org/10.1016/j.bpc.2020.106525
  • Pant, P., & Jayaram, B. (2019). C5′ omitted DNA enhances bendability and protein binding. Biochemical and Biophysical Research Communications, 514(3), 979–984. https://doi.org/10.1016/j.bbrc.2019.05.051
  • Pant, P., Pathak, A., & Jayaram, B. (2020). Symmetrization of the backbone of nucleic acids: A molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 38(3), 673–681. https://doi.org/10.1080/07391102.2019.1585292
  • Pant, P., Pathak, A., & Jayaram, B. (2021). Symmetric nucleosides as potent purine nucleoside phosphorylase inhibitors. The Journal of Physical Chemistry B, 125(11), 2856–2862. https://doi.org/10.1021/acs.jpcb.0c10553
  • Pasi, M., Maddocks, J. H., Beveridge, D., Bishop, T. C., Case, D. A., Cheatham, T., Dans, P. D., Jayaram, B., Lankas, F., Laughton, C., Mitchell, J., Osman, R., Orozco, M., Pérez, A., Petkevičiūtė, D., Spackova, N., Sponer, J., Zakrzewska, K., & Lavery, R. (2014). μABC: A systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Research, 42(19), 12272–12283. https://doi.org/10.1093/nar/gku855
  • Pfaffenbach, K. T., & Lee, A. S. (2011). The critical role of GRP78 in physiologic and pathologic stress. Current Opinion in Cell Biology, 23(2), 150–156. https://doi.org/10.1016/j.ceb.2010.09.007
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Shao, J., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3(6), 2312–2334. https://doi.org/10.1021/ct700119m
  • Skiada, A., Lass-Floerl, C., Klimko, N., Ibrahim, A., Roilides, E., & Petrikkos, G. (2018). Challenges in the diagnosis and treatment of mucormycosis. Medical Mycology, 56(suppl_1), S93–S101. https://doi.org/10.1093/mmy/myx101
  • Sundaram, N., Bhende, T., Yashwant, R., Jadhav, S., & Jain, A. (2021). Mucormycosis in COVID-19 patients. Indian Journal of Ophthalmology, 69(12), 3728–3733. https://doi.org/10.4103/ijo.IJO_1316_21
  • Swegat, W., Schlitter, J., Krüger, P., & Wollmer, A. (2003). MD simulation of protein-ligand interaction: Formation and dissociation of an insulin-phenol complex. Biophysical Journal, 84(3), 1493–1506. https://doi.org/10.1016/S0006-3495(03)74962-5
  • The PyMOL Molecular Graphics System. Version 1.2r3pre, Schrödinger, LLC.
  • Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klime-Rak, G., Delepine, J. C., Cieplak, P., & Dupradeau, F. Y. R. (2011). Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39(Web Server issue), W511–W517. https://doi.org/10.1093/nar/gkr288
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). Drugbank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–72. https://doi.org/10.1093/nar/gkj067
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14.https://doi.org/10.1093/nar/gkab255

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.