167
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design of a novel multi-epitope vaccine candidate against Chlamydia trachomatis using structural and nonstructural proteins: an immunoinformatics study

ORCID Icon, , , , ORCID Icon, , ORCID Icon & show all
Pages 4356-4369 | Received 12 Mar 2023, Accepted 28 May 2023, Published online: 08 Jun 2023

References

  • Aboudounya, M. M., & Heads, R. J. (2021). COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ace2 expression, facilitating entry and causing hyperinflammation. Mediators of Inflammation, 2021, 8874339. https://doi.org/10.1155/2021/8874339
  • Aslam, S., Ahmad, S., Noor, F., Ashfaq, U. A., Shahid, F., Rehman, A., Tahir Ul Qamar, M., Alatawi, E. A., Alshabrmi, F. M., & Allemailem, K. S. (2021). Designing a multi-epitope vaccine against Chlamydia trachomatis by employing integrated core proteomics, immuno-informatics and in silico approaches. Biology (Basel), 10(10), 997. https://doi.org/10.3390/biology10100997
  • Bahrami, A. A., Payandeh, Z., Khalili, S., Zakeri, A., & Bandehpour, M. (2019). Immunoinformatics: In silico approaches and computational design of a multi-epitope, immunogenic protein. International Reviews of Immunology, 38(6), 307–322. https://doi.org/10.1080/08830185.2019.1657426
  • Behmard, E., Abdulabbas, H. T., Abdalkareem Jasim, S., Najafipour, S., Ghasemian, A., Farjadfar, A., Barzegari, E., Kouhpayeh, A., & Abdolmaleki, P. (2022). Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach. PloS One, 17(8), e0272582. https://doi.org/10.1371/journal.pone.0272582
  • Byrne, G. I. (2010). Chlamydia trachomatis strains and virulence: Rethinking links to infection prevalence and disease severity. The Journal of Infectious Diseases, 201(Suppl 2), S126–S133. https://doi.org/10.1086/652398
  • Cerutti, D. S., Duke, R. E., Darden, T. A., & Lybrand, T. P. (2009). Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility. Journal of Chemical Theory and Computation, 5(9), 2322. https://doi.org/10.1021/ct9001015
  • Collar, A. L., Linville, A. C., Core, S. B., Wheeler, C. M., Geisler, W. M., Peabody, D. S., Chackerian, B., & Frietze, K. M. (2020). Antibodies to variable domain 4 linear epitopes of the chlamydia trachomatis major outer membrane protein are not associated with Chlamydia resolution or reinfection in women. mSphere, 5(5). https://doi.org/10.1128/mSphere.00654-20
  • DeLano, W. L. (2002 March). Pymol: An open-source molecular graphics tool. CCP4 Newsletter Protein Crystallography, 40(1), 82–92.
  • Demirci, M., Bahar Tokman, H., Taner, Z., Keskin, F. E., Çağatay, P., Ozturk Bakar, Y., Özyazar, M., Kiraz, N., & Kocazeybek, B. S. (2020). Bacteroidetes and Firmicutes levels in gut microbiota and effects of hosts TLR2/TLR4 gene expression levels in adult type 1 diabetes patients in Istanbul, Turkey. Journal of Diabetes and Its Complications, 34(2), 107449. https://doi.org/10.1016/j.jdiacomp.2019.107449
  • Dudiak, B. M., Maksimchuk, K. R., Bednar, M. M., Podracky, C. J., Burg, J. M., Nguyen, T. M., Nwogbo, F. O., Valdivia, R. H., & McCafferty, D. G. (2019). Insights into the autoproteolytic processing and catalytic mechanism of the chlamydia trachomatis virulence-associated protease CPAF. Biochemistry, 58(33), 3527–3536. https://doi.org/10.1021/acs.biochem.9b00522
  • Dzakah, E. E., Zhao, J., Wang, L., Rashid, F., Xu, R., Yang, L., Wan, Z., Huang, L., Wang, H., Chen, S., Ke, W., Kyei, F., Deng, K., & Tang, S. (2022). Chlamydia trachomatis stimulation enhances HIV-1 susceptibility through the modulation of a member of the macrophage inflammatory proteins. The Journal of Investigative Dermatology, 142(5), 1338–1348.e6. https://doi.org/10.1016/j.jid.2021.09.020
  • Halajian, E. A., LeBlanc, E. V., Gee, K., & Colpitts, C. C. (2022). Activation of TLR4 by viral glycoproteins: A double-edged sword? Frontiers in Microbiology, 13, 1007081. https://doi.org/10.3389/fmicb.2022.1007081
  • Honkila, M., Renko, M., Pokka, T., Wikström, E., Uhari, M., & Tapiainen, T. (2018). Symptoms, signs and long-term prognosis of vertically transmitted Chlamydia trachomatis infections. The Pediatric Infectious Disease Journal, 37(9), 930–933. https://doi.org/10.1097/inf.0000000000001925
  • Janssen, K. J. H., Dirks, J., Dukers-Muijrers, N., Hoebe, C., & Wolffs, P. F. G. (2018). Review of Chlamydia trachomatis viability methods: Assessing the clinical diagnostic impact of NAAT positive results. Expert Review of Molecular Diagnostics, 18(8), 739–747. https://doi.org/10.1080/14737159.2018.1498785
  • Jones, C. A., Hadfield, J., Thomson, N. R., Cleary, D. W., Marsh, P., Clarke, I. N., & O’Neill, C. E. (2020). The nature and extent of plasmid variation in Chlamydia trachomatis. Microorganisms, 8(3), 373. https://doi.org/10.3390/microorganisms8030373
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77(Suppl 9), 114–122. https://doi.org/10.1002/prot.22570
  • Linse, J. B., & Hub, J. S. (2021). Three- and four-site models for heavy water: SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW. The Journal of Chemical Physics, 154(19), 194501. https://doi.org/10.1063/5.0050841
  • Mahdevar, E., Kefayat, A., Safavi, A., Behnia, A., Hejazi, S. H., Javid, A., & Ghahremani, F. (2021). Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Scientific Reports, 11(1), 23121. https://doi.org/10.1038/s41598-021-01770-w
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2022). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure & Dynamics, 40(14), 6363–6380. https://doi.org/10.1080/07391102.2021.1883111
  • Mascellino, M. T., Ciardi, M. R., Oliva, A., Cecinato, F., Hassemer, M. P., & Borgese, L. (2008). Chlamydia trachomatis detection in a population of asymptomatic and symptomatic women: Correlation with the presence of serological markers for this infection. New Microbiology, 31(2), 249–256.
  • Mora Lagares, L., Minovski, N., Caballero Alfonso, A. Y., Benfenati, E., Wellens, S., Culot, M., Gosselet, F., & Novič, M. (2020). Homology modeling of the human P-glycoprotein (ABCB1) and insights into ligand binding through molecular docking studies. International Journal of Molecular Sciences, 21(11), 4058. https://doi.org/10.3390/ijms21114058
  • Murray, S. M., & McKay, P. F. (2021). Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine, 39(22), 2965–2975. https://doi.org/10.1016/j.vaccine.2021.03.043
  • Murthy, A. K., Guentzel, M. N., Zhong, G., & Arulanandam, B. P. (2009). Chlamydial protease-like activity factor – Insights into immunity and vaccine development. Journal of Reproductive Immunology, 83(1-2), 179–184. https://doi.org/10.1016/j.jri.2009.05.007
  • Nash, S. D., Chernet, A., Moncada, J., Stewart, A. E. P., Astale, T., Sata, E., Zerihun, M., Gessese, D., Melak, B., Ayenew, G., Ayele, Z., Chanyalew, M., Lietman, T. M., Callahan, E. K., Schachter, J., & Tadesse, Z. (2020). Ocular Chlamydia trachomatis infection and infectious load among pre-school aged children within trachoma hyperendemic districts receiving the SAFE strategy, Amhara region, Ethiopia. PLoS Neglected Tropical Diseases, 14(5), e0008226. https://doi.org/10.1371/journal.pntd.0008226
  • Noor, F., Ahmad, S., Saleem, M., Alshaya, H., Qasim, M., Rehman, A., Ehsan, H., Talib, N., Saleem, H., Bin Jardan, Y. A., & Aslam, S. (2022). Designing a multi-epitope vaccine against Chlamydia pneumoniae by integrating the core proteomics, subtractive proteomics and reverse vaccinology-based immunoinformatics approaches. Computers in Biology and Medicine, 145, 105507. https://doi.org/10.1016/j.compbiomed.2022.105507
  • Patton, D. L., Sweeney, Y. C., Baldessari, A. E., Cles, L., Kari, L., Sturdevant, G. L., Yang, C., & Caldwell, H. D. (2018). The Chlamydia trachomatis plasmid and CT135 virulence factors are not essential for genital tract infection or pathology in female pig-tailed Macaques. Infection and Immunity, 86(5). https://doi.org/10.1128/IAI.00121-18
  • Patton, M. J., McCorrister, S., Grant, C., Westmacott, G., Fariss, R., Hu, P., Zhao, K., Blake, M., Whitmire, B., Yang, C., Caldwell, H. D., & McClarty, G. (2016). Chlamydial protease-like activity factor and type III secreted effectors cooperate in inhibition of p65 nuclear translocation. mBio, 7(5). https://doi.org/10.1128/mBio.01427-16
  • Peres, L. d P., da Luz, F. A. C., Pultz, B. d A., Brígido, P. C., de Araújo, R. A., Goulart, L. R., & Silva, M. J. B. (2015). Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnology Advances, 33(8), 1868–1877. https://doi.org/10.1016/j.biotechadv.2015.10.013
  • Peters, R. P., Feucht, U. D., de Vos, L., Ngwepe, P., McIntyre, J. A., Klausner, J. D., & Medina-Marino, A. (2021). Mother-to-child transmission of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis in HIV-infected pregnant women in South Africa. International Journal of STD & AIDS, 32(9), 799–805. https://doi.org/10.1177/0956462421990218
  • Phillips, J. A. (2019). Chlamydia infections. Workplace Health & Safety, 67(7), 375–376. https://doi.org/10.1177/2165079919853590
  • Rapin, N., Lund, O., & Castiglione, F. (2011). Immune system simulation online. Bioinformatics (Oxford, England), 27(14), 2013–2014. https://doi.org/10.1093/bioinformatics/btr335
  • Robertson, M. J., & Skiniotis, G. (2022). Development of OPLS-AA/M parameters for simulations of G protein-coupled receptors and other membrane proteins. Journal of Chemical Theory and Computation, 18(7), 4482–4489. https://doi.org/10.1021/acs.jctc.2c00015
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Russi, R. C., Bourdin, E., García, M. I., & Veaute, C. M. I. (2018). In silico prediction of T- and B-cell epitopes in PmpD: First step towards to the design of a Chlamydia trachomatis vaccine. Biomedical Journal, 41(2), 109–117. https://doi.org/10.1016/j.bj.2018.04.007
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019a). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). In silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Schott, B. H., Antonia, A. L., Wang, L., Pittman, K. J., Sixt, B. S., Barnes, A. B., Valdivia, R. H., & Ko, D. C. (2020). Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease. Scientific Reports, 10(1), 18269. https://doi.org/10.1038/s41598-020-75129-y
  • Srivastava, S., Kamthania, M., Kumar Pandey, R., Kumar Saxena, A., Saxena, V., Kumar Singh, S., Kumar Sharma, R., & Sharma, N. (2019). Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. Journal of Biomolecular Structure & Dynamics, 37(16), 4345–4360. https://doi.org/10.1080/07391102.2018.1548977
  • Steiert, B., Faris, R., & Weber, M. M. (2023). In search of a mechanistic link between chlamydia trachomatis-induced cellular pathophysiology and oncogenesis. Infection and Immunity, 91(2), e0044322. https://doi.org/10.1128/iai.00443-22
  • Tifrea, D. F., Pal, S., & de la Maza, L. M. (2020). A recombinant Chlamydia trachomatis MOMP vaccine elicits cross-serogroup protection in mice against vaginal shedding and infertility. The Journal of Infectious Diseases, 221(2), 191–200. https://doi.org/10.1093/infdis/jiz438
  • Tu, J., Hou, B., Wang, B., Lin, X., Gong, W., Dong, H., Zhu, S., Chen, S., Xue, X., Zhao, K.-N., & Zhang, L. (2014). A multi-epitope vaccine based on Chlamydia trachomatis major outer membrane protein induces specific immunity in mice. Acta Biochimica et Biophysica Sinica, 46(5), 401–408. https://doi.org/10.1093/abbs/gmu016
  • van den Brule, A. J., Munk, C., Winther, J. F., Kjaer, S. K., Jørgensen, H. O., Meijer, C. J., & Morré, S. A. (2002). Prevalence and persistence of asymptomatic Chlamydia trachomatis infections in urine specimens from Danish male military recruits. International Journal of STD & AIDS, 13(Suppl 2), 19–22. https://doi.org/10.1258/095646202762226100
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Versteeg, B., Bruisten, S. M., Pannekoek, Y., Jolley, K. A., Maiden, M. C. J., van der Ende, A., & Harrison, O. B. (2018). Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease. BMC Genomics, 19(1), 130. https://doi.org/10.1186/s12864-018-4522-3
  • Witkin, S. S., Minis, E., Athanasiou, A., Leizer, J., & Linhares, I. M. (2017). Chlamydia trachomatis: The persistent pathogen. Clinical and Vaccine Immunology, 24(10). https://doi.org/10.1128/CVI.00203-17
  • Yang, C., Kari, L., Lei, L., Carlson, J. H., Ma, L., Couch, C. E., Whitmire, W. M., Bock, K., Moore, I., Bonner, C., McClarty, G., & Caldwell, H. D. (2020). Chlamydia trachomatis plasmid gene protein 3 is essential for the establishment of persistent infection and associated immunopathology. mBio, 11(4). https://doi.org/10.1128/mBio.01902-20
  • Yoon, S.-Y., Kang, S.-K., Lee, H.-B., Oh, S.-H., Kim, W.-S., Li, H.-S., Bok, J.-D., Cho, C.-S., & Choi, Y.-J. (2020). Enhanced efficacy of immunization with a foot-and-mouth disease multi-epitope subunit vaccine using Mannan-decorated inulin microparticles. Tissue Engineering and Regenerative Medicine, 17(1), 33–44. https://doi.org/10.1007/s13770-019-00228-5
  • Yu, H., Karunakaran, K. P., Jiang, X., Chan, Q., Rose, C., Foster, L. J., Johnson, R. M., & Brunham, R. C. (2020). Comparison of Chlamydia outer membrane complex to recombinant outer membrane proteins as vaccine. Vaccine, 38(16), 3280–3291. https://doi.org/10.1016/j.vaccine.2020.02.059
  • Zhong, G. (2017). Chlamydial plasmid-dependent pathogenicity. Trends in Microbiology, 25(2), 141–152. https://doi.org/10.1016/j.tim.2016.09.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.