150
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase in different pHs – a computational study

, , , , , ORCID Icon, , , , & ORCID Icon show all
Pages 5030-5041 | Received 27 Mar 2023, Accepted 06 Jun 2023, Published online: 16 Jun 2023

References

  • Ajith, S., Ghosh, J., Shet, D., ShreeVidhya, S., Punith, B. D., & Elangovan, A. V. (2019). Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express, 9(1), 3. https://doi.org/10.1186/s13568-018-0725-x
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–541. https://doi.org/10.1093/nar/gks375
  • Baker, D., & Agard, D. A. (1994). Kinetics versus thermodynamics in protein folding. Biochemistry, 33(24), 7505–7509. https://doi.org/10.1021/bi00190a002
  • Barducci, A., Bonomi, M., & Parrinello, M. (2011). Metadynamics. WIREs Computational Molecular Science, 1(5), 826–843. https://doi.org/10.1002/wcms.31
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Casteel, S. N., Maguire, R. O., Israel, D. W., Crozier, C. R., & Brake, J. (2011). Broiler breeder manure phosphorus forms are affected by diet, location, and period of accumulation. Poultry Science, 90(12), 2689–2696. https://doi.org/10.3382/ps.2011-01584
  • Chen, C. C., Cheng, K. J., Ko, T. P., & Guo, R. T. (2015). current progresses in phytase research: Three-dimensional structure and protein engineering. ChemBioEng Reviews, 2(2), 76–86. https://doi.org/10.1002/cben.201400026
  • Chen, K. I., Chiang, C. Y., Ko, C. Y., Huang, H. Y., & Cheng, K. C. (2018). Reduction of phytic acid in soymilk by immobilized phytase system. Journal of Food Science, 83(12), 2963–2969. https://doi.org/10.1111/1750-3841.14394
  • Chen, M., Chen, J., & Sun, F. (2008). Agricultural phosphorus flow and its environmental impacts in China. The Science of the Total Environment, 405(1-3), 140–152. https://doi.org/10.1016/j.scitotenv.2008.06.031
  • Corrêa, T. L. R., & de Araújo, E. F. (2020). Fungal phytases: From genes to applications. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 51(3), 1009–1020. https://doi.org/10.1007/s42770-020-00289-y
  • de Souza, T. P. P., da S Mariano, R. M., Vieira, M. S., Andrade, S. F. V., Godoi, R. R., Goncalves, A. F. A., Naves, L. P., Lima, W. J. N., Goncalves, D. B., Campos-da-Paz, M., & Galdino, A. S. (2018). Biofactories for the production of recombinant phytases and their application in the animal feed industry. Recent Patents on Biotechnology, 12(2), 113–125. https://doi.org/10.2174/1872208311666170915161848
  • Effects of Glycosylation on the Stability of Protein Pharmaceuticals - PMC. (2023). Retrieved January 26, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649977/
  • Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris | FEMS Microbiology Letters | Oxford Academic. (2023). Retrieved January 26, from https://academic.oup.com/femsle/article/290/1/18/513603
  • Gautier, A. E., Walk, C. L., & Dilger, R. N. (2018). Effects of a high level of phytase on broiler performance, bone ash, phosphorus utilization, and phytate dephosphorylation to inositol. Poultry Science, 97(1), 211–218. https://doi.org/10.3382/ps/pex291
  • Godoi, R. R., Andrade, S. F. V., Machado, J. M., et al. (2017). Fungal phytase production in different hosts: A brief review. Published online June 15, https://doi.org/10.23880/oajmb-16000120
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server issue), W368–W371. https://doi.org/10.1093/nar/gki464
  • Greiner, R., & Konietzny, U. (2005). Phytase for food application. Food Technology and Biotechnology, 44.
  • Hosseini, S. H., Papanikolaou, Y., Islam, N., Rashmi, P., Shamloo, A., & Vatanparast, H. (2019). Consumption patterns of grain-based foods among adults in Canada: Evidence from Canadian community health survey-nutrition 2015. Nutrients, 11(4), 784. https://doi.org/10.3390/nu11040784
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Joshi, S. P., & Satyanarayana, T. (2015). Heterologous expression of yeast and fungal phytases: Developments and future perspectives. Indian Journal of Biotechnology, 14(3), 293-311. http://nopr.niscpr.res.in/handle/123456789/33404
  • Knott, M., & Chan, H. S. (2006). Criteria for downhill protein folding: Calorimetry, chevron plot, kinetic relaxation, and single-molecule radius of gyration in chain models with subdued degrees of cooperativity. Proteins, 65(2), 373–391. https://doi.org/10.1002/prot.21066
  • Konietzny, U., & Greiner, R. (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journal of Food Science and Technology, 37(7), 791–812. https://doi.org/10.1046/j.1365-2621.2002.00617.x
  • Kumar, K., Patel, K., Agrawal, D. C., & Khire, J. M. (2015). Insights into the unfolding pathway and identification of thermally sensitive regions of phytase from Aspergillus niger by molecular dynamics simulations. Journal of Molecular Modeling, 21(6), 163. https://doi.org/10.1007/s00894-015-2696-z
  • Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H., & Azain, M. J. (2013). Phytase, a new life for an “old” enzyme. Annual Review of Animal Biosciences, 1, 283–309. https://doi.org/10.1146/annurev-animal-031412-103717
  • Leyva-Jimenez, H., Alsadwi, A. M., Gardner, K., Voltura, E., & Bailey, C. A. (2019). Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poultry Science, 98(2), 811–819. https://doi.org/10.3382/ps/pey389
  • Li, R., Zhao, J., Sun, C., Lu, W., Guo, C., & Xiao, K. (2010). Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. Frontiers of Agriculture in China, 4(2), 195–209. https://doi.org/10.1007/s11703-010-0103-1
  • Li, W., Angel, R., Kim, S. W., Brady, K., Yu, S., & Plumstead, P. W. (2016). Impacts of dietary calcium, phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract. Poultry Science, 95(3), 581–589. https://doi.org/10.3382/ps/pev354
  • Lima, L. H. F. d., Fernandez-Quintéro, M. L., Rocha, R. E. O., Mariano, D. C. B., de Melo-Minardi, R. C., & Liedl, K. R. (2021). Conformational flexibility correlates with glucose tolerance for point mutations in β-glucosidases – A computational study. Journal of Biomolecular Structure & Dynamics, 39(5), 1621–1634. https://doi.org/10.1080/07391102.2020.1734484
  • Liu, Q., Huang, Q., Lei, X. G., & Hao, Q. (2004). Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics. Structure (London, England: 1993), 12(9), 1575–1583. https://doi.org/10.1016/j.str.2004.06.015
  • Liu, S. Y., Cadogan, D. J., Péron, A., Truong, H. H., & Selle, P. H. (2014). Effects of phytase supplementation on growth performance, nutrient utilization and digestive dynamics of starch and protein in broiler chickens offered maize-, sorghum- and wheat-based diets. Animal Feed Science and Technology, 197, 164–175. https://doi.org/10.1016/j.anifeedsci.2014.08.005
  • Liu, Y. F., Zhang, K. Y., Zhang, Y., Bai, S. P., Ding, X. M., Wang, J. P., Peng, H. W., Xuan, Y., Su, Z. W., & Zeng, Q. F. (2020). Effects of graded levels of phytase supplementation on growth performance, serum biochemistry, tibia mineralization, and nutrient utilization in Pekin ducks. Poultry Science, 99(10), 4845–4852. https://doi.org/10.1016/j.psj.2020.06.047
  • Lobanov, M., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Mrudula Vasudevan, U., Jaiswal, A. K., Krishna, S., & Pandey, A. (2019). Thermostable phytase in feed and fuel industries. Bioresource Technology, 278, 400–407. https://doi.org/10.1016/j.biortech.2019.01.065
  • Niño-Gómez, D. C., Rivera-Hoyos, C. M., Morales-Álvarez, E. D., Reyes-Montaño, E. A., Vargas-Alejo, N. E., Ramírez-Casallas, I. N., Erkan Türkmen, K., Sáenz-Suárez, H., Sáenz-Moreno, J. A., Poutou-Piñales, R. A., González-Santos, J., & Arévalo-Galvis, A. (2017). In Silico” Characterization of 3-Phytase A and 3-Phytase B from Aspergillus niger. Enzyme Research, 2017, 9746191. https://doi.org/10.1155/2017/9746191
  • Nutho, B., Nunthaboot, N., Wolschann, P., Kungwan, N., & Rungrotmongkol, T. (2017). Metadynamics supports molecular dynamics simulation-based binding affinities of eucalyptol and beta-cyclodextrin inclusion complexes. RSC Advances, 7(80), 50899–50911. https://doi.org/10.1039/C7RA09387J
  • Oh, T.-K., Oh, S., Kim, S., Park, J. S., Vinod, N., Jang, K. M., Kim, S. C., Choi, C. W., Ko, S.-M., Jeong, D. K., & Udayakumar, R. (2014). Expression of Aspergillus nidulans phy gene in Nicotiana benthamiana produces active phytase with broad specificities. International Journal of Molecular Sciences, 15(9), 15571–15591. https://doi.org/10.3390/ijms150915571
  • Papanikolaou, Y., Jones, J. M., & Fulgoni, V. L. (2017). Several grain dietary patterns are associated with better diet quality and improved shortfall nutrient intakes in US children and adolescents: A study focusing on the 2015-2020 Dietary Guidelines for Americans. Nutrition Journal, 16(1), 13. https://doi.org/10.1186/s12937-017-0230-0
  • Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D. B., & van Loon, A. P. G. M. (1997). Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochimica et Biophysica Acta, 1353(3), 217–223. https://doi.org/10.1016/S0167-4781(97)00107-3
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Singh, A., Walk, C. L., Ghosh, T. K., Bedford, M. R., & Haldar, S. (2013). Effect of a novel microbial phytase on production performance and tibia mineral concentration in broiler chickens given low-calcium diets. British Poultry Science, 54(2), 206–215. https://doi.org/10.1080/00071668.2013.775403
  • Singh, B., & Satyanarayana, T. (2015). Fungal phytases: Characteristics and amelioration of nutritional quality and growth of non-ruminants. Journal of Animal Physiology and Animal Nutrition, 99(4), 646–660. https://doi.org/10.1111/jpn.12236
  • Sohail, S. S., & Roland, D. A. (1999). Influence of supplemental phytase on performance of broilers four to six weeks of age. Poultry Science, 78(4), 550–555. https://doi.org/10.1093/ps/78.4.550
  • Sommerfeld, V., Schollenberger, M., Kühn, I., & Rodehutscord, M. (2018). Interactive effects of phosphorus, calcium, and phytase supplements on products of phytate degradation in the digestive tract of broiler chickens. Poultry Science, 97(4), 1177–1188. https://doi.org/10.3382/ps/pex404
  • Thompson, M. J., & Eisenberg, D. (1999). Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. Journal of Molecular Biology, 290(2), 595–604. https://doi.org/10.1006/jmbi.1999.2889
  • Torrens-Fontanals, M., Stepniewski, T. M., Aranda-García, D., Morales-Pastor, A., Medel-Lacruz, B., & Selent, J. (2020). How do molecular dynamics data complement static structural data of GPCRs. International Journal of Molecular Sciences, 21(16), 5933. https://doi.org/10.3390/ijms21165933
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Tzeng, S. R., & Kalodimos, C. G. (2012). Protein activity regulation by conformational entropy. Nature, 488(7410), 236–240. https://doi.org/10.1038/nature11271
  • Varki, A., Cummings, R. D., & Esko, J. D. (Eds.). (2022). Essentials of glycobiology (4th ed.) Cold Spring Harbor Laboratory Press. Retrieved January 26, 2023, from http://www.ncbi.nlm.nih.gov/books/NBK579918/
  • Wang, Y., Gao, X., Su, Q., Wu, W., & An, L. (2007). Cloning, expression, and enzyme characterization of an acid heat-stable phytase from Aspergillus fumigatus WY-2. Current Microbiology, 55(1), 65–70. https://doi.org/10.1007/s00284-006-0613-5
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Woods Group. 2005. Published (2023). GLYCAM Web. Complex Carbohydrate Research Center, University of Georgia, Athens, GA. http://glycam.org
  • Wu, D., Wu, S. B., Choct, M., & Swick, R. A. (2017). Performance, intestinal microflora, and amino acid digestibility altered by exogenous enzymes in broilers fed wheat- or sorghum-based diets. Journal of Animal Science, 95(2), 740–751. https://doi.org/10.2527/jas.2016.0411
  • Wyss, M., Pasamontes, L., Friedlein, A., Rémy, R., Tessier, M., Kronenberger, A., Middendorf, A., Lehmann, M., Schnoebelen, L., Röthlisberger, U., Kusznir, E., Wahl, G., Müller, F., Lahm, H. W., Vogel, K., & van Loon, A. P. (1999). Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): Molecular size, glycosylation pattern, and engineering of proteolytic resistance. Applied and Environmental Microbiology, 65(2), 359–366. https://doi.org/10.1128/AEM.65.2.359-366.1999
  • Xu, H., Liu, Y., Wang, F., Yuan, L., Wang, Y., Ma, S., Beneš, H., & Xia, Q. (2014). Overexpression and functional characterization of an Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx mori. Transgenic Research, 23(4), 669–677. https://doi.org/10.1007/s11248-014-9797-9
  • Yang, Z., & Zhang, Z. (2018). Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnology Advances, 36(1), 182–195. https://doi.org/10.1016/j.biotechadv.2017.11.002
  • Zeng, Z. K., Li, Q. Y., Zhao, P. F., Xu, X., Tian, Q. Y., Wang, H. L., Pan, L., Yu, S., & Piao, X. S. (2016). A new Buttiauxella phytase continuously hydrolyzes phytate and improves amino acid digestibility and mineral balance in growing pigs fed phosphorous-deficient diet1. Journal of Animal Science, 94(2), 629–638. https://doi.org/10.2527/jas.2015-9143
  • Zhao, Q., Liu, H., Zhang, Y., & Zhang, Y. (2010). Engineering of protease-resistant phytase from Penicillium sp.: High thermal stability, low optimal temperature and pH. Journal of Bioscience and Bioengineering, 110(6), 638–645. https://doi.org/10.1016/j.jbiosc.2010.08.003
  • Zhu, A., Tan, H., & Cao, L. (2019). Isolation of phytase-producing yeasts from rice seedlings for prospective probiotic applications. 3 Biotech, 9(6), 216. https://doi.org/10.1007/s13205-019-1746-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.