141
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5178-5196 | Received 07 Feb 2023, Accepted 09 Jun 2023, Published online: 20 Jun 2023

References

  • Abdalla, M., Eltayb, W. A., El-Arabey, A. A., Singh, K., & Jiang, X. (2022). Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Computers in Biology and Medicine, 141, 105025. https://doi.org/10.1016/j.compbiomed.2021.105025
  • Aboukhatwa, S. M., Sidhom, P. A., Angeli, A., Supuran, C. T., & Tawfik, H. O. (2023). Terminators or guardians? Design, synthesis, and cytotoxicity profiling of chalcone-sulfonamide hybrids. ACS Omega, 8(8), 7666–7683. https://doi.org/10.1021/acsomega.2c07285
  • Al-Sehemi, A. G., Pannipara, M., Parulekar, R. S., Kilbile, J. T., Choudhari, P. B., & Shaikh, M. H. (2022). In silico exploration of binding potentials of anti SARS-CoV-1 phytochemicals against main protease of SARS-CoV-2. Journal of Saudi Chemical Society, 26(3), 101453. https://doi.org/10.1016/j.jscs.2022.101453
  • Al-Sehemi, A. G., Pannipara, M., Parulekar, R. S., Patil, O., Choudhari, P. B., Bhatia, M. S., Zubaidha, P. K., & Tamboli, Y. (2021). Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors: In silico analysis. Journal of Biomolecular Structure and Dynamics, 39(15), 5804–5818. https://doi.org/10.1080/07391102.2020.1790038
  • Amaral, L., Martins, A., Spengler, G., & Molnar, J. (2014). Efflux pumps of Gram-negative bacteria: What they do, how they do it, with what and how to deal with them. Frontiers in Pharmacology, 4(JAN), 168. https://doi.org/10.3389/fphar.2013.00168
  • Amer, M. M. K., Abdellattif, M. H., Mouneir, S. M., Zordok, W. A., & Shehab, W. S. (2021). Synthesis, DFT calculation, pharmacological evaluation, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives. Bioorganic Chemistry, 114, 105136. https://doi.org/10.1016/j.bioorg.2021.105136
  • Anes, J., McCusker, M. P., Fanning, S., & Martins, M. (2015). The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology, 6(JUN), 587. https://doi.org/10.3389/fmicb.2015.00587
  • Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: A rundown of a global crisis. Infection and Drug Resistance, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
  • Bagal, V. K., Rathod, S. S., Mulla, M. M., Pawar, S. C., Choudhari, P. B., Pawar, V. T., & Mahuli, D. V. (2023). Exploration of bioactive molecules from Tinospora cordifolia and actinidia deliciosa as an immunity modulator via molecular docking and molecular dynamics simulation study. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2023.2165076
  • Bandgar, B. P., & Gawande, S. S. (2010). Synthesis and biological screening of a combinatorial library of β-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents. Bioorganic & Medicinal Chemistry, 18(5), 2060–2065. https://doi.org/10.1016/j.bmc.2009.12.077
  • Baquero, F., & Alenazy, R. (2022). Drug efflux pump inhibitors: A promising approach to counter multidrug resistance in gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli. Biology, 11(9), 1328. https://doi.org/10.3390/biology11091328
  • Bartlett, J. G., Gilbert, D. N., & Spellberg, B. (2013). Seven ways to preserve the Miracle of antibiotics. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 56(10), 1445–1450. https://doi.org/10.1093/cid/c70
  • Basha, G. M., Parulekar, R. S., Al-Sehemi, A. G., Pannipara, M., Siddaiah, V., Kumari, S., Choudhari, P. B., & Tamboli, Y. (2022). Design and in silico investigation of novel Maraviroc analogues as dual inhibition of CCR-5/SARS-CoV-2 Mpro. Journal of Biomolecular Structure and Dynamics, 40(21), 11095–11110. https://doi.org/10.1080/07391102.2021.1955742
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review. A, General Physics, 38(6), 3098–3100. https://doi.org/10.1103/PhysRevA.38.3098
  • Belete, T. M. (2019). Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbiome Journal, 11, 100052. https://doi.org/10.1016/j.humic.2019.01.001
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. http://www.rcsb.org/pdb/status.html https://doi.org/10.1093/nar/28.1.235
  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., & Hopkins, A. L. (2012). Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2), 90–98. https://doi.org/10.1038/nchem.1243
  • Bloom, G., Merrett, G. B., Wilkinson, A., Lin, V., & Paulin, S. (2017). Antimicrobial resistance and universal health coverage. BMJ Global Health, 2(4), e000518. https://doi.org/10.1136/bmjgh-2017-000518
  • Buddensiek, D., Mlostoń, G., Matczak, P., & Voss, J. (2021). A DFT study on the mechanism of the formation of 1,4,2,3-dithiadiazinanes by head-to-head [3 + 3] cyclodimerization of thiocarbonyl S-imides. Journal of Physical Organic Chemistry, 34(4) https://doi.org/10.1002/poc.4170
  • Cacciotto, P., Ramaswamy, V. K., Malloci, G., Ruggerone, P., & Vargiu, A. V. (2018). Molecular modeling of multidrug properties of resistance nodulation division (RND) transporters. Methods in molecular biology (Vol. 1700, pp. 179–219). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7454-2_11
  • Chen, Y. C. (2015). Beware of docking! Trends in Pharmacological Sciences, 36(2), 78–95. https://doi.org/10.1016/j.tips.2014.12.001
  • da Cunha Xavier, J., Almeida-Neto, F. W. d Q., da Silva, P. T., de Sousa, A. P., Marinho, E. S., Marinho, M. M., Rocha, J. E., Freitas, P. R., de Araújo, A. C. J., Freitas, T. S., Nogueira, C. E. S., de Lima-Neto, P., Bandeira, P. N., Teixeira, A. M. R., Coutinho, H. D. M., & dos Santos, H. S. (2021). Structural characterization, DFT calculations, ADMET studies, antibiotic potentiating activity, evaluation of efflux pump inhibition and molecular docking of chalcone (E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one. Journal of Molecular Structure, 1227, 129692. https://doi.org/10.1016/j.molstruc.2020.129692
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dassault Systèmes. (2020). BIOVIA Discovery Studio Visualizr (v20.1.0.19295).
  • dos Santos, I. V. F., Borges, R. S., Silva, G. M., de Lima, L. R., Bastos, R. S., Ramos, R. S., Silva, L. B., da Silva, C. H. T. P., & dos Santos, C. B. R. (2022). Hierarchical virtual screening based on rocaglamide derivatives to discover new potential anti-skin cancer agents. Frontiers in Molecular Biosciences, 9, 836572. https://doi.org/10.3389/fmolb.2022.836572
  • Dror, O., Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2009). Novel approach for efficient pharmacophore-based virtual screening: Method and applications. Journal of Chemical Information and Modeling, 49(10), 2333–2343. https://doi.org/10.1021/ci900263d
  • Du, D., Wang, Z., James, N. R., Voss, J. E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., & Luisi, B. F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature, 509(7501), 512–515. https://doi.org/10.1038/nature13205
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: new docking methods, expanded force field, and python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Eicher, T., Cha, H. J., Seeger, M. A., Brandstätter, L., El-Delik, J., Bohnert, J. A., Kern, W. V., Verrey, F., Grütter, M. G., Diederichs, K., & Pos, K. M. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5687–5692. https://doi.org/10.1073/PNAS.1114944109/-/DCSUPPLEMENTAL
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M. M., Alsfouk, B. A., Husein, D. Z., Ibrahim, I., M., Metwaly, A. M., & Eissa, I. H. (2022). Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 27(14), 4606. https://doi.org/10.3390/molecules27144606
  • Escribano-Ferrer, E., Queralt Regué, J., Garcia-Sala, X., Boix Montanés, A., & Lamuela-Raventos, R. M. (2019). In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringenin chalcone, and quercetin in mice. Journal of Natural Products, 82(2), 177–182. https://doi.org/10.1021/acs.jnatprod.8b00366
  • Ferraz, C. A. N., Tintino, S. R., Teixeira, A. M. R., Bandeira, P. N., Santos, H. S., Cruz, B. G., Nogueira, C. E. S., Moura, T. F., Pereira, R. L. S., Sena, D. M., Freitas, T. S., Rocha, J. E., & Coutinho, H. D. M. (2020). Potentiation of antibiotic activity by chalcone (E)-1-(4′-aminophenyl)-3-(furan-2-yl)-prop-2-en-1-one against gram-positive and gram-negative MDR strains. Microbial Pathogenesis, 148, 104453. https://doi.org/10.1016/j.micpath.2020.104453
  • Ferreira De Freitas, R., & Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/c7md00381a
  • Flurry, R. L. (1968). Molecular orbital theories of bonding in organic molecules.
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Freitas, T. S., Xavier, J. C., Pereira, R. L. S., Rocha, J. E., Campina, F. F., de Araújo Neto, J. B., Silva, M. M. C., Barbosa, C. R. S., Marinho, E. S., Nogueira, C. E. S., dos Santos, H. S., Coutinho, H. D. M., & Teixeira, A. M. R. (2021). In vitro and in silico studies of chalcones derived from natural acetophenone inhibitors of NorA and MepA multidrug efflux pumps in Staphylococcus aureus. Microbial Pathogenesis, 161(Pt B), 105286. https://doi.org/10.1016/J.MICPATH.2021.105286
  • Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and Public Health, 10(4), 369–378. https://doi.org/10.1016/j.jiph.2016.08.007
  • Gaikwad, R., Rathod, S., & Shinde, A. (2022). In-silico study of phytoconstituents from tribulus terrestris as potential Anti-psoriatic agent. Asian Journal of Pharmaceutical Research, 12(4), 267–274. https://doi.org/10.52711/2231-5691.2022.00043
  • Gao, L., Wang, H., Zheng, B., & Huang, F. (2021). Combating antibiotic resistance: Current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. Giant, 7, 100066. https://doi.org/10.1016/j.giant.2021.100066
  • Gil-Gil, T., Ochoa-Sánchez, L. E., Baquero, F., & Martínez, J. L. (2021). Antibiotic resistance: Time of synthesis in a post-genomic age. Computational and Structural Biotechnology Journal, 19, 3110–3124. https://doi.org/10.1016/J.CSBJ.2021.05.034
  • Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., Andrade, C. H., & Neves, B. J. (2017). Chalcone derivatives: Promising starting points for drug design. Molecules, 22(8), 1210. https://doi.org/10.3390/molecules22081210
  • Gould, I. M. (2009). Antibiotic resistance: The perfect storm. International Journal of Antimicrobial Agents, 34(SUPPL. 3), S2–S5. https://doi.org/10.1016/S0924-8579(09)70549-7
  • Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • Hwang, D., & Lim, Y. H. (2019). Resveratrol controls Escherichia coli growth by inhibiting the AcrAB-TolC efflux pump. FEMS Microbiology Letters, 366(4), 30. https://doi.org/10.1093/femsle/fnz030
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC-A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182. https://doi.org/10.1021/ci049714
  • Jasim, H. A., Nahar, L., Jasim, M. A., Moore, S. A., Ritchie, K. J., & Sarker, S. D. (2021). Chalcones: Synthetic chemistry follows where nature leads. Biomolecules, 11 (8), 1203. https://doi.org/10.3390/biom11081203
  • Joshi, M., Singh, S., Patel, S., Shah, D., & Krishnakumar, A. (2018). Identification of small molecule activators for ErbB 4 receptor to enhance oligodendrocyte regeneration by in silico approach. Computational Toxicology, 8, 13–20. https://doi.org/10.1016/j.comtox.2018.08.004
  • Karlgren, M., & Bergström, C. A. S. (2015). How physicochemical properties of drugs affect their metabolism and clearance. RSC Drug Discovery Series, (49), 1–26. https://doi.org/10.1039/9781782622376-00001
  • Kasimanickam, V., Kasimanickam, M., & Kasimanickam, R. (2021). Antibiotics use in food animal production: escalation of antimicrobial resistance: Where are we now in combating AMR? Medical Sciences, 9(1), 14. https://doi.org/10.3390/medsci9010014
  • Katiyar, K., Srivastava, R. K., & Nath, R. (2021). Identification of novel anti-cryptosporidial inhibitors through a combined approach of pharmacophore modeling, virtual screening, and molecular docking. Informatics in Medicine Unlocked, 24, 100583. https://doi.org/10.1016/j.imu.2021.100583
  • Kausar, T., & Nayeem, S. M. (2018). Identification of small molecule inhibitors of ALK2: A virtual screening, density functional theory, and molecular dynamics simulations study. Journal of Molecular Modeling, 24(9) https://doi.org/10.1007/s00894-018-3789-2
  • Kobylka, J., Kuth, M. S., Müller, R. T., Geertsma, E. R., & Pos, K. M. (2020). AcrB: A mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 1459(1), 38–68. https://doi.org/10.1111/NYAS.14239
  • Kuber Banoth, R., & Thatikonda, A. (2020). A review on natural chalcones an update. International Journal of Pharmaceutical Sciences and Research, 11(2), 546. https://doi.org/10.13040/IJPSR.0975-8232.11(2).546-55
  • Kumar, B. S., Anuragh, S., Kammala, A. K., & Ilango, K. (2022). Computer aided drug design approach to screen phytoconstituents of adhatoda vasica as potential inhibitors of SARS-CoV-2 main protease enzyme. Life, 12(2), 315. https://doi.org/10.3390/life12020315
  • Kumar, S., Saini, V., Maurya, I. K., Sindhu, J., Kumari, M., Kataria, R., & Kumar, V. (2018). Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. Plos One, 13(4), e0196016. https://doi.org/10.1371/journal.pone.0196016
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Mahapatra, D. K., Bharti, S. K., & Asati, V. (2015). Anti-cancer chalcones: Structural and molecular target perspectives. European Journal of Medicinal Chemistry, 98, 69–114. https://doi.org/10.1016/j.ejmech.2015.05.004
  • Mann, A., Nehra, K., Rana, J. S., & Dahiya, T. (2021). Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences, 2, 100030. https://doi.org/10.1016/J.CRMICR.2021.100030
  • Matamoros-Recio, A., Franco-Gonzalez, J. F., Forgione, R. E., Torres-Mozas, A., Silipo, A., & Martín-Santamaría, S. (2021). Understanding the antibacterial resistance: Computational explorations in bacterial membranes. ACS Omega, 6(9), 6041–6054. https://doi.org/10.1021/acsomega.0c05590
  • Melander, R. J., & Melander, C. (2017). The challenge of overcoming antibiotic resistance: An adjuvant approach? ACS Infectious Diseases, 3(8), 559–563. https://doi.org/10.1021/acsinfecdis.7b00071
  • Menezes, J. C. J. M. D. S., & Diederich, M. F. (2019). Natural dimers of coumarin, chalcones, and resveratrol and the link between structure and pharmacology. European Journal of Medicinal Chemistry, 182, 111637. https://doi.org/10.1016/j.ejmech.2019.111637
  • Mogasale, V. V., Saldanha, P., Pai, V., Rekha, P. D., & Mogasale, V. (2021). A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Scientific Reports, 11(1), 1–7. https://doi.org/10.1038/s41598-021-84293-8
  • Mumit, M. A., Pal, T. K., Alam, M. A., Islam, M. A. A. A. A., Paul, S., & Sheikh, M. C. (2020). DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate. Journal of Molecular Structure, 1220, 128715. https://doi.org/10.1016/j.molstruc.2020.128715
  • Murakami, S., Nakashima, R., Yamashita, E., & Yamaguchi, A. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature, 419(6907), 587–593. https://doi.org/10.1038/nature01050
  • Narayanapillai, S. C., Leitzman, P., O'Sullivan, M. G., & Xing, C. (2014). Flavokawains A and B in kava, not dihydromethysticin, potentiate acetaminophen-induced hepatotoxicity in C57BL/6 mice. Chemical Research in Toxicology, 27(10), 1871–1876. https://doi.org/10.1021/tx5003194
  • Ni, L., Meng, C. Q., & Sikorski, J. A. (2004). Recent advances in therapeutic chalcones. Expert Opinion on Therapeutic Patents, 14(12), 1669–1691. https://doi.org/10.1517/13543776.14.12.1669
  • Niu, L., Ding, L., Lu, C., Zuo, F., Yao, K., Xu, S., Li, W., Yang, D., & Xu, X. (2016). Flavokawain A inhibits cytochrome P450 in in vitro metabolic and inhibitory investigations. Journal of Ethnopharmacology, 191, 350–359. https://doi.org/10.1016/j.jep.2016.06.039
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(33), 33. https://doi.org/10.1186/1758-2946-3-33
  • Orlikova, B., Tasdemir, D., Golais, F., Dicato, M., & Diederich, M. (2011). Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes & Nutrition, 6(2), 125–147. https://doi.org/10.1007/s12263-011-0210-5
  • Ouyang, Y., Li, J., Chen, X., Fu, X., Sun, S., & Wu, Q. (2021). Chalcone derivatives: Role in anticancer therapy. Biomolecules, 11(6), 894. https://doi.org/10.3390/biom11060894
  • Pathania, S., & Singh, P. K. (2021). Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical screening parameter in drug designing protocols? In. Expert Opinion on Drug Metabolism & Toxicology, 17 (4), 351–354. https://doi.org/10.1080/17425255.2021.1865309
  • Patial, P. K., & Cannoo, D. S. (2021). Phytochemical profile, antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. Branch extracts. Natural Product Research, 35(22), 4611–4615. https://doi.org/10.1080/14786419.2019.1696330
  • Petchiappan, A., & Chatterji, D. (2017). Antibiotic resistance: Current perspectives. ACS Omega, 2(10), 7400–7409. https://doi.org/10.1021/acsomega.7b01368
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pos, K. M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochimica et Biophysica Acta, 1794(5), 782–793. (https://doi.org/10.1016/j.bbapap.2008.12.015
  • Pulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., Chin, C. F., & Sudesh, K. (2022). Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Rathod, S., Chavan, P., Mahuli, D., Rochlani, S., Shinde, S., Pawar, S., Choudhari, P., Dhavale, R., Mudalkar, P., & Tamboli, F. (2023). Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. Journal of Molecular Modeling, 29(4), 1–23. https://doi.org/10.1007/s00894-023-05521-8
  • Rathod, S., Shinde, K., Porlekar, J., Choudhari, P., Dhavale, R., Mahuli, D., Tamboli, Y., Bhatia, M., Haval, K. P., Al-Sehemi, A. G., & Pannipara, M. (2023). Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: an in silico molecular docking and dynamic approach. ACS Omega, 8(1), 391–409. https://doi.org/10.1021/acsomega.2c04837
  • Reading, E., Ahdash, Z., Fais, C., Ricci, V., Wang-Kan, X., Grimsey, E., Stone, J., Malloci, G., Lau, A. M., Findlay, H., Konijnenberg, A., Booth, P. J., Ruggerone, P., Vargiu, A. V., Piddock, L. J. V., & Politis, A. (2020). Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-19397-2
  • Reygaert, WC. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/MICROBIOL.2018.3.482
  • Rocha, J. E., de Freitas, T. S., da Cunha Xavier, J., Pereira, R. L. S., Junior, F. N. P., Nogueira, C. E. S., Marinho, M. M., Bandeira, P. N., de Oliveira, M. R., Marinho, E. S., Teixeira Marinho, A. M. R., dos Santos Marinho, H. S., & Coutinho, H. D. M. (2021). Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 140, 111768. https://doi.org/10.1016/j.biopha.2021.111768
  • Rochlani, S., Bhatia, M., Rathod, S., Choudhari, P., & Dhavale, R. (2023). Exploration of limonoids for their broad spectrum antiviral potential via DFT, molecular docking and molecular dynamics simulation approach. Natural Product Research, 1–6. https://doi.org/10.1080/14786419.2023.2202398
  • Rozmer, Z., & Perjési, P. (2016). Naturally occurring chalcones and their biological activities. Phytochemistry Reviews, 15(1), 87–120. https://doi.org/10.1007/s11101-014-9387-8
  • Salehi, B., Quispe, C., Chamkhi, I., El Omari, N., Balahbib, A., Sharifi-Rad, J., Bouyahya, A., Akram, M., Iqbal, M., Docea, A. O., Caruntu, C., Leyva-Gómez, G., Dey, A., Martorell, M., Calina, D., López, V., & Les, F. (2020). Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Frontiers in Pharmacology, 11, 592654. https://doi.org/10.3389/fphar.2020.592654
  • Santos, M., Santos, R., & Ferreira, S. (2022). Resveratrol, a novel inhibitor of the NorA efflux pump and resistance modulator in staphylococcus aureus. Medical Sciences Forum 2022, 12(1), 16. https://doi.org/10.3390/ECA2022-12718
  • Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008a). PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Research, 36(Web Server), W223–W228. https://doi.org/10.1093/nar/gkn187
  • Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008b). Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 15(7), 737–754. https://doi.org/10.1089/cmb.2007.0130
  • Shen, C., Hu, X., Gao, J., Zhang, X., Zhong, H., Wang, Z., Xu, L., Kang, Y., Cao, D., & Hou, T. (2021). The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction. Journal of Cheminformatics, 13(1) https://doi.org/10.1186/s13321-021-00560-w
  • Shi, X., Chen, M., Yu, Z., Bell, J. M., Wang, H., Forrester, I., Villarreal, H., Jakana, J., Du, D., Luisi, B. F., Ludtke, S. J., & Wang, Z. (2019). In situ structure and assembly of the multidrug efflux pump AcrAB-TolC. Nature Communications, 10(1), 1–6. https://doi.org/10.1038/s41467-019-10512-6
  • Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
  • Silva, J., Esmeraldo Rocha, J., da Cunha Xavier, J., Sampaio de Freitas, T., Douglas Melo Coutinho, H., Nogueira Bandeira, P., Rodrigues de Oliveira, M., Nunes da Rocha, M., Machado Marinho, E., de Kassio Vieira Monteiro, N., Ribeiro, L. R., Róseo Paula Pessoa Bezerra de Menezes, R., Machado Marinho, M., Magno Rodrigues Teixeira, A., Silva Dos Santos, H., & Silva Marinho, E. (2022). Antibacterial and antibiotic modifying activity of chalcone (2E)-1-(4′-aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps: In vitro and in silico approaches. Microbial Pathogenesis, 169, 105664. https://doi.org/10.1016/J.MICPATH.2022.105664
  • Singkham-In, U., Higgins, P. G., Wannigama, D. L., Hongsing, P., & Chatsuwan, T. (2020). Rescued chlorhexidine activity by resveratrol against carbapenem-resistant Acinetobacter baumannii via down-regulation of AdeB efflux pump. Plos One, 15(12), e0243082. https://doi.org/10.1371/journal.pone.0243082
  • Sivagami, K., Vignesh, V. J., Srinivasan, R., Divyapriya, G., & Nambi, I. M. (2020). Antibiotic usage, residues and resistance genes from food animals to human and environment: An Indian scenario. Journal of Environmental Chemical Engineering, 8(1), 102221. https://doi.org/10.1016/j.jece.2018.02.029
  • Snyder, H. D., & Kucukkal, T. G. (2021). Computational chemistry activities with Avogadro and ORCA. Journal of Chemical Education, 98(4), 1335–1341. https://doi.org/10.1021/acs.jchemed.0c00959
  • Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267. https://doi.org/10.1016/J.BBRC.2014.05.090
  • Thangavel, M., Chandramohan, V., Shankaraiah, L. H., Jayaraj, R. L., Poomani, K., Magudeeswaran, S., Govindasamy, H., Vijayakumar, R., Rangasamy, B., Dharmar, M., & Namasivayam, E. (2020). Design and molecular dynamic investigations of 7,8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein. Scientific Reports, 10(1) https://doi.org/10.1038/s41598-020-57417-9
  • Thilagavathi, R., & Mancera, R. L. (2010). Ligand-protein cross-docking with water molecules. Journal of Chemical Information and Modeling, 50(3), 415–421. https://doi.org/10.1021/ci900345h
  • van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews. Drug Discovery, 2(3), 192–204. https://doi.org/10.1038/nrd1032
  • Vargiu, A. V., & Nikaido, H. (2012). Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20637–20642. https://doi.org/10.1073/pnas.1218348109
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Venter, H., Mowla, R., Ohene-Agyei, T., & Ma, S. (2015). RND-type drug efflux pumps from Gram-negative bacteria: Molecular mechanism and inhibition. Frontiers in Microbiology, 6(APR), 377. https://doi.org/10.3389/fmicb.2015.00377
  • Wan, H. (2013). What ADME tests should be conducted for preclinical studies? Admet & Dmpk, 1(3), 19–28. https://doi.org/10.5599/admet.1.3.9
  • Watkins, R. R., & Bonomo, R. A. (2016). Overview: Global and Local Impact of Antibiotic Resistance. Infectious Disease Clinics of North America, 30(2), 313–322. https://doi.org/10.1016/j.idc.2016.02.001
  • Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., & Miao, Z. (2017). Chalcone: A privileged structure in medicinal chemistry. Chemical Reviews, 117(12), 7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.