243
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5114-5127 | Received 02 May 2023, Accepted 08 Jun 2023, Published online: 19 Jun 2023

References

  • Barrett, S. P., & Salzman, J. (2016). Circular RNAs: Analysis, expression and potential functions. Development (Cambridge, England), 143(11), 1838–1847. https://doi.org/10.1242/dev.128074
  • Barsanti, C., Trivella, M. G., D'Aurizio, R., El Baroudi, M., Baumgart, M., Groth, M., Caruso, R., Verde, A., Botta, L., Cozzi, L., & Pitto, L. (2015). Differential regulation of microRNAs in end-stage failing hearts is associated with left ventricular assist device unloading. BioMed Research International, 2015, 592512. https://doi.org/10.1155/2015/592512
  • Cai, H., Jiang, Z., Yang, X., Lin, J., Cai, Q., & Li, X. (2020). Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1. Endocrine Journal, 67(4), 397–408. https://doi.org/10.1507/endocrj.EJ19-0271
  • Cai, Y., Xu, L., Xu, C., Wang, Y., & Fan, C. (2022). Hsa_circ_0001445 inhibits Ox-LDL-induced HUVECs inflammation, oxidative stress and apoptosis by regulating MiRNA-640. Perfusion, 37(1), 86–94. https://doi.org/10.1177/0267659120979472
  • Cao, Q., Guo, Z., Du, S., Ling, H., & Song, C. (2020). Circular RNAs in the pathogenesis of atherosclerosis. Life Sciences, 255, 117837. https://doi.org/10.1016/j.lfs.2020.117837
  • Deininger, P. L., & Batzer, M. A. (1999). Alu repeats and human disease. Molecular Genetics and Metabolism, 67(3), 183–193. https://doi.org/10.1006/mgme.1999.2864
  • Deng, Y., Wang, J., Xie, G., Zeng, X., & Li, H. (2019). Circ-HIPK3 strengthens the effects of adrenaline in heart failure by MiR-17-3p – ADCY6 axis. International Journal of Biological Sciences, 15(11), 2484–2496. https://doi.org/10.7150/ijbs.36149
  • Dinh, P., Peng, J., Tran, T., Wu, D., Tran, C., Dinh, T., & Pan, S. (2023). Identification of hsa_circ_0001445 of a novel circRNA-miRNA-mRNA regulatory network as potential biomarker for coronary heart disease. Frontiers in Cardiovascular Medicine, (10):, 1104223. https://doi.org/10.3389/fcvm.2023.1104223
  • Duan, L., Hu, J., Xiong, X., Liu, Y., & Wang, J. (2018). The role of DNA methylation in coronary artery disease. Gene, 646, 91–97. https://doi.org/10.1016/j.gene.2017.12.033
  • Fan, X., Weng, X., Zhao, Y., Chen, W., Gan, T., & Xu, D. (2017). Circular RNAs in cardiovascular disease: An overview. BioMed Research International, 2017, 5135781. https://doi.org/10.1155/2017/5135781
  • Geng, H. H., Li, R., Su, Y. M., Xiao, J., Pan, M., Cai, X. X., & Ji, X. P. (2016). The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of MiR-7a on its target genes expression. PLoS One, 11(3), e0151753. https://doi.org/10.1371/journal.pone.0151753
  • Ghigo, A., & Li, M. (2015). Phosphoinositide 3-kinase: Friend and foe in cardiovascular disease. Frontiers in Pharmacology, 6, 169. https://doi.org/10.3389/fphar.2015.00169
  • Grossmann, S., Bauer, S., Robinson, P.N., & Vingron, M. (2007). Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics, (22), 3024–31. https://doi.org/10.1093/bioinformatics/btm440
  • Hueso, M., Cruzado, J. M., Torras, J., & Navarro, E. (2018). ALUminating the path of atherosclerosis progression: chaos theory suggests a role for Alu repeats in the development of atherosclerotic vascular disease. International Journal of Molecular Sciences, 19(6), 1734. https://doi.org/10.3390/ijms19061734
  • Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
  • Klein, L. W., & Nathan, S. (2003). Coronary artery disease in young adults. Journal of the American College of Cardiology, 41(4), 529–531. https://doi.org/10.1016/s0735-1097(02)02861-9
  • Lev-Maor, G., Sorek, R., Shomron, N., & Ast, G. (2003). The birth of an alternatively spliced exon: 3’ splice-site selection in Alu exons. Science (New York, N.Y.), 300(5623), 1288–1291. https://doi.org/10.1126/science.1082588
  • Li, J., Wu, Y., & Liu, H. (2020). Expression and role of MiR-338-3p in peripheral blood and placenta of patients with pregnancy-induced hypertension. Experimental and Therapeutic Medicine, 20(1), 418–426. https://doi.org/10.3892/etm.2020.8719
  • Li, M., Ding, W., Sun, T., Tariq, M. A., Xu, T., Li, P., & Wang, J. (2018). Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. The FEBS Journal, 285(2), 220–232. https://doi.org/10.1111/febs.14191
  • Li, X., Zhao, Z., Jian, D., Li, W., Tang, H., & Li, M. (2017). Hsa-CircRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diabetes & Vascular Disease Research, 14(6), 510–515. https://doi.org/10.1177/1479164117722714
  • Malakar, A. K., Choudhury, D., Halder, B., Paul, P., Uddin, A., & Chakraborty, S. (2019). A review on coronary artery disease, its risk factors, and therapeutics. Journal of Cellular Physiology, 234(10), 16812–16823. https://doi.org/10.1002/jcp.28350
  • Medina-Leyte, D. J., Zepeda-Garcia, O., Dominguez-Perez, M., Gonzalez-Garrido, A., Villarreal-Molina, T., & Jacobo-Albavera, L. (2021). Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. International Journal of Molecular Sciences, 22(8), 3850. https://doi.org/10.3390/ijms22083850
  • Miao, L., Yin, R. X., Zhang, Q. H., Liao, P. J., Wang, Y., Nie, R. J., & Li, H. (2019). A novel CircRNA-MiRNA-MRNA network identifies Circ-YOD1 as a biomarker for coronary artery disease. Scientific Reports, 9(1), 18314. https://doi.org/10.1038/s41598-019-54603-2
  • Quertermous, T., & Ingelsson, E. (2016). Coronary artery disease and its risk factors: Leveraging shared genetics to discover novel biology. Circulation Research, 118(1), 14–16. https://doi.org/10.1161/CIRCRESAHA.115.307937
  • Regmi, M., & Siccardi, M. A. (2022). Coronary artery disease prevention. In StatPearls.
  • Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., & Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLoS Genetics, 9(9), e1003777. https://doi.org/10.1371/journal.pgen.1003777
  • Song, C. L., Wang, J. P., Xue, X., Liu, N., Zhang, X. H., Zhao, Z., Liu, J. G., Zhang, C. P., Piao, Z. H., Liu, Y., & Yang, Y. B. (2017). Effect of circular ANRIL on the inflammatory response of vascular endothelial cells in a rat model of coronary atherosclerosis. Cellular Physiology and Biochemistrys: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 42(3), 1202–1212. https://doi.org/10.1159/000478918
  • Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L. H., & Bindereif, A. (2015). Exon circularization requires canonical splice signals. Cell Reports, 10(1), 103–111. https://doi.org/10.1016/j.celrep.2014.12.002
  • Sun, H. J., Wu, Z. Y., Nie, X. W., & Bian, J. S. (2019). Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Frontiers in Pharmacology, 10, 1568. https://doi.org/10.3389/fphar.2019.01568
  • Sun, Y., Chen, R., Lin, S., Xie, X., Ye, H., Zheng, F., Lin, J., Huang, Q., Huang, S., Ruan, Q., Zhang, T., Li, H., & Wu, S. (2019). Association of circular RNAs and environmental risk factors with coronary heart disease. BMC Cardiovascular Disorders, 19(1), 223. https://doi.org/10.1186/s12872-019-1191-3
  • Wang, K., Long, B., Liu, F., Wang, J. X., Liu, C. Y., Zhao, B., Zhou, L. Y., Sun, T., Wang, M., Yu, T., Gong, Y., Liu, J., Dong, Y. H., Li, N., & Li, P. F. (2016). A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting MiR-223. European Heart Journal, 37(33), 2602–2611. https://doi.org/10.1093/eurheartj/ehv713
  • Wang, X., Gao, M., Zhou, S., Wang, J., Liu, F., Tian, F., Jin, J., Ma, Q., Xue, X., Liu, J., Liu, Y., & Chen, Y. (2017). Trend in young coronary artery disease in China from 2010 to 2014: A retrospective study of young patients </= 45. BMC Cardiovascular Disorders, 17(1), 18. https://doi.org/10.1186/s12872-016-0458-1
  • Wang, Y., Zhao, R., Shen, C., Liu, W., Yuan, J., Li, C., Deng, W., Wang, Z., Zhang, W., Ge, J., & Shi, B. (2020). Exosomal CircHIPK3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction. Oxidative Medicine and Cellular Longevity, 2020, 8418407. https://doi.org/10.1155/2020/8418407
  • Wei, M. Y., Lv, R., & Teng, Z. (2020). Circular RNA circHIPK3 as a novel circRNA regulator of autophagy and endothelial cell dysfunction in atherosclerosis. European Review for Medical and Pharmacological Sciences, 24(24), 12849–12858. https://doi.org/10.26355/eurrev_202012_24187
  • Welden, J. R., & Stamm, S. (2019). Pre-MRNA structures forming circular RNAs. Biochimica et Biophysica Acta. Gene Regulatory Mechanisms, 1862(11-12), 194410. https://doi.org/10.1016/j.bbagrm.2019.194410
  • Yin, J., Hou, X., & Yang, S. (2019). MicroRNA-338-3p promotes Ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-beta/smad pathway. Journal of Cellular Physiology, 234(7), 11577–11586. https://doi.org/10.1002/jcp.27814
  • Yu, F., Tie, Y., Zhang, Y., Wang, Z., Yu, L., Zhong, L., & Zhang, C. (2020). Circular RNA expression profiles and bioinformatic analysis in coronary heart disease. Epigenomics, 12(5), 439–454. https://doi.org/10.2217/epi-2019-0369
  • Yu, Y., Yan, R., Chen, X., Sun, T., & Yan, J. (2020). Paeonol suppresses the effect of Ox-LDL on mice vascular endothelial cells by regulating MiR-338-3p/TET2 axis in atherosclerosis. Molecular and Cellular Biochemistry, 475(1-2), 127–135. https://doi.org/10.1007/s11010-020-03865-w
  • Zhan, Y., Brown, C., Maynard, E., Anshelevich, A., Ni, W., Ho, I. C., & Oettgen, P. (2005). Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. The Journal of Clinical Investigation, 115(9), 2508–2516. https://doi.org/10.1172/JCI24403
  • Zhang, S., Wang, W., Wu, X., & Zhou, X. (2020). Regulatory roles of circular RNAs in coronary artery disease. Molecular Therapy. Nucleic Acids, 21, 172–179. https://doi.org/10.1016/j.omtn.2020.05.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.