192
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Computational and experimental examinations of new antitumor palladium(II) complex: CT-DNA-/BSA-binding, in-silico prediction, DFT perspective, docking, molecular dynamics simulation and ONIOM

, , &
Pages 5447-5469 | Received 12 Feb 2023, Accepted 12 Jun 2023, Published online: 22 Jun 2023

References

  • Abu-Dief, A. M., El-Khatib, R. M., Aljohani, F. S., Alzahrani, S. O., Mahran, A., Khalifa, M. E., & El-Metwaly, N. M. (2021). Synthesis and intensive characterization for novel Zn (II), Pd (II), Cr (III) and VO (II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. Journal of Molecular Structure, 1242, 130693. https://doi.org/10.1016/j.molstruc.2021.130693
  • Aguilera-Garrido, A., Del Castillo-Santaella, T., Yang, Y., Galisteo-González, F., Gálvez-Ruiz, M. J., Molina-Bolívar, J. A., Holgado-Terriza, J. A., Cabrerizo-Vílchez, M. Á., & Maldonado-Valderrama, J. (2021). Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science, 290, 102365. https://doi.org/10.1016/j.cis.2021.102365
  • Ahamad, M. N., Shahid, M., Ansari, A., Kumar, M., Khan, I. M., Ahmad, M., Rahisuddin, R., & Arif, R. (2019). A combined experimental and theoretical approach to investigate the structure, magnetic properties and DNA binding affinity of a homodinuclear Cu (ii) complex. New Journal of Chemistry, 43(19), 7511–7519. https://doi.org/10.1039/C9NJ00228F
  • Ahmadi, F., Alizadeh, A., Bakhshandeh-Saraskanrood, F., Jafari, B., & Khodadadian, M. (2010). Experimental and computational approach to the rational monitoring of hydrogen-bonding interaction of 2-Imidazolidinethione with DNA and guanine. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48(1), 29–36. https://doi.org/10.1016/j.fct.2009.09.010
  • Ahmed, A., Fatima, A., Shakya, S., Rahman, Q. I., Ahmad, M., Javed, S., AlSalem, H. S., & Ahmad, A. (2022). Crystal structure, topology, DFT and hirshfeld surface analysis of a novel charge transfer complex (L3) of anthraquinone and 4-{[(anthracen-9-yl) meth-yl] amino}-benzoic acid (L2) exhibiting photocatalytic properties: An experimental and theoretical approach. Molecules, 27(5), 1724. https://doi.org/10.3390/molecules27051724
  • Akram, M., Lal, H., Shakya, S., Varshney, R., & Kabir-ud-Din. (2022). Molecular engineering of complexation between RNA and biodegradable cationic gemini surfactants: Role of the hydrophobic chain length. Molecular Systems Design & Engineering, 7(5), 487–506. https://doi.org/10.1039/D1ME00147G
  • Aljamali, N. M., Jawd, S. M., Jawad, Z. M., & Alfatlawi, I. O. (2017). Inhibition activity of (azo-acetyl acetone) on bacteria of mouth. Research Journal of Pharmacy and Technology, 10(6), 1683–1686. https://doi.org/10.5958/0974-360X.2017.00297.9
  • Alkhamis, K., Alsoliemy, A., Aljohani, M. M., Alrefaei, A. F., Abumelha, H. M., H. H. Mahmoud, M., Zaky, R., & El-Metwaly, N. (2021). Conductometry of nano-sized zinc sulfate; synthesis and characterization of new hydrazone complexes: Conformational and in-vitro assay. Journal of Molecular Liquids, 340, 117167. https://doi.org/10.1016/j.molliq.2021.117167
  • Almalki, S. A., Bawazeer, T. M., Asghar, B., Alharbi, A., Aljohani, M. M., Khalifa, M. E., & El-Metwaly, N. (2021). Synthesis and characterization of new thiazole-based Co (II) and Cu (II) complexes; therapeutic function of thiazole towards COVID-19 in comparing to current antivirals in treatment protocol. Journal of Molecular Structure, 1244, 130961. https://doi.org/10.1016/j.molstruc.2021.130961
  • Al-Qahtani, S. D., Alsoliemy, A., Almehmadi, S. J., Alkhamis, K., Alrefaei, A. F., Zaky, R., & El-Metwaly, N. (2021). Green synthesis for new Co (II), Ni (II), Cu (II) and Cd (II) hydrazone-based complexes; characterization, biological activity and electrical conductance of nano-sized copper sulphate. Journal of Molecular Structure, 1244, 131238. https://doi.org/10.1016/j.molstruc.2021.131238
  • Alsoliemy, A., Alrefaei, A. F., Almehmadi, S. J., Almehmadi, S. J., Hossan, A., Khalifa, M. E., & El-Metwaly, N. M. (2021). Synthesis, characterization and self-assembly of new cholesteryl-substitued sym-tetrazine: Fluorescence, gelation and mesogenic properties. Journal of Molecular Liquids, 342, 117543. https://doi.org/10.1016/j.molliq.2021.117543
  • Anjomshoa, M., Hadadzadeh, H., Fatemi, S. J., & Torkzadeh-Mahani, M. (2015). A mononuclear Ni (II) complex with 5, 6-diphenyl-3-(2-pyridyl)-1, 2, 4-triazine: DNA-and BSA-binding and anticancer activity against human breast carcinoma cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 205–215. https://doi.org/10.1016/j.saa.2014.09.016
  • Anjomshoa, M., Hadadzadeh, H., Torkzadeh-Mahani, M., Fatemi, S. J., Adeli-Sardou, M., Rudbari, H. A., & Nardo, V. M. (2015). A mononuclear Cu (II) complex with 5, 6-diphenyl-3-(2-pyridyl)-1, 2, 4-triazine: Synthesis, crystal structure, DNA-and BSA-binding, molecular modeling, and anticancer activity against MCF-7, A-549, and HT-29 cell lines. European Journal of Medicinal Chemistry, 96, 66–82. https://doi.org/10.1016/j.ejmech.2015.04.020
  • Aramesh-Boroujeni, Z., Jahani, S., Khorasani-Motlagh, M., Kerman, K., & Noroozifar, M. (2019). Evaluation of DNA, BSA binding, DNA cleavage and antimicrobial activity of ytterbium (III) complex containing 2, 2'-bipyridine ligand. Journal of Biomolecular Structure and Dynamics, 38(6), 1711–1725. https://doi.org/10.1080/07391102.2019.1617788
  • Asadi, Z., Golchin, M., Eigner, V., Dusek, M., & Amirghofran, Z. (2017). A detailed study on the interaction of a novel water-soluble glycine bridged zinc (II) Schiff base coordination polymer with BSA: Synthesis, crystal structure, molecular docking and cytotoxicity effect against A549, Jurkat and Raji cell lines. Inorganica Chimica Acta, 465, 50–60. https://doi.org/10.1016/j.ica.2017.05.066
  • Bahkali, A., Wei, J., & Deng, Y. (2021). Synthesis and characterization of ethylenediamine platinum (II) complexes containing thiourea derivatives. X-ray crystal structures of [Pt (en)(2-imidazolidinethione) 2](NO3) 2 and [Pt (en)(1-phenyl-2-thiourea) 2](NO3) 2. Inorganica Chimica Acta, 520, 120302. https://doi.org/10.1016/j.ica.2021.120302
  • Banuppriya, G., Sribalan, R., & Padmini, V. (2018). Synthesis and characterization of curcumin-sulfonamide hybrids: Biological evaluation and molecular docking studies. Journal of Molecular Structure, 1155, 90–100. https://doi.org/10.1016/j.molstruc.2017.10.097
  • Beauchemin, R., N'Soukpoe-Kossi, C., Thomas, T., Thomas, T., Carpentier, R., & Tajmir-Riahi, H. (2007). Polyamine analogues bind human serum albumin. Biomacromolecules, 8(10), 3177–3183. https://doi.org/10.1021/bm700697a
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review. A, General Physics, 38(6), 3098–3100. https://doi.org/10.1103/physreva.38.3098
  • Bhuiya, S., Pradhan, A. B., Haque, L., & Das, S. (2016). Molecular aspects of the interaction of iminium and alkanolamine forms of the anticancer alkaloid chelerythrine with plasma protein bovine serum albumin. The Journal of Physical Chemistry. B, 120(1), 5–17. https://doi.org/10.1021/acs.jpcb.5b07818
  • Böhm, G., Muhr, R., & Jaenicke, R. (1992). Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Engineering, 5(3), 191–195. https://doi.org/10.1093/protein/5.3.191
  • Cao, X., Yang, Z., He, Y., Xia, Y., He, Y., & Liu, J. (2019). Multispectroscopic exploration and molecular docking analysis on interaction of eriocitrin with bovine serum albumin. Journal of Molecular Recognition: JMR, 32(7), e2779. https://doi.org/10.1002/jmr.2779
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Caygill, G. B., & Steel, P. J. (1987). Cyclometallated compounds III. Cyclopalladation of phenyl pyrazoles. Crystal structure of acetylacetonato [2-(3-methyl-5-phenylpyrazol-1) C1, N2′] palladium (II). Journal of Organometallic Chemistry, 327(1), 115–123. https://doi.org/10.1016/0022-328X(87)80232-2
  • Çerkezkayabekir, A., Bakar, E., Özfidan, G. K., & Sanal, F. (2020). Acute toxic effect of ethylenediamine dihydrochloride (EDA-2HCl) on liver and kidney. Journal of Applied Biological Sciences, 14(1), 39–52.
  • Chen, L.-m., Peng, F., Li, G.-d., Jie, X.-m., Cai, K.-r., Cai, C., Zhong, Y., Zeng, H., Li, W., Zhang, Z., & Chen, J.-c. (2016). The studies on the cytotoxicity in vitro, cellular uptake, cell cycle arrest and apoptosis-inducing properties of ruthenium methylimidazole complex [Ru (MeIm) 4 (p-cpip)] 2+. Journal of Inorganic Biochemistry, 156, 64–74. https://doi.org/10.1016/j.jinorgbio.2015.12.016
  • Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387. https://doi.org/10.1016/j.poly.2021.115387
  • Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., & Frisch, M. J. (1999). A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Journal of Molecular Structure: Theochem, 461–462, 1–21. https://doi.org/10.1016/S0166-1280(98)00475-8
  • Dorafshan Tabatabai, A. S., Dehghanian, E., & Mansouri-Torshizi, H. (2022). In-silico and in-detail experimental interaction studies of new antitumor Zn (II) complex with CT-DNA and serum albumin. Journal of Biomolecular Structure and Dynamics, 1–18. https://doi.org/10.1080/07391102.2022.2144459
  • Dorafshan Tabatabai, A. S., Dehghanian, E., & Mansouri-Torshizi, H. (2023). Exploring the interaction between the newly designed antitumor Zn (II) complex and CT-DNA/BSA: Spectroscopic methods, DFT computational analysis, and docking simulation. Applied Biochemistry and Biotechnology, 1–33. https://doi.org/10.1007/s12010-023-04394-0
  • Dustkami, M., Mansouri-Torshizi, H., Abdi, K., Dehghanian, E., Saeidifar, M., & Mohammadi, F. (2022). A couple of antitumor Pd (II) complexes make DNA-refolding and HSA-unfolding: Experimental and docking studies. Journal of Molecular Liquids, 349, 118450. https://doi.org/10.1016/j.molliq.2021.118450
  • Eftink, M. R., & Ghiron, C. A. (1981). Fluorescence quenching studies with proteins. Analytical Biochemistry, 114(2), 199–227. https://doi.org/10.1016/0003-2697(81)90474-7
  • Ellahioui, Y., Prashar, S., & Gomez-Ruiz, S. (2017). Anticancer applications and recent investigations of metallodrugs based on gallium, tin and titanium. Inorganics, 5(1), 4. https://doi.org/10.3390/inorganics5010004
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Esteghamat-Panah, R., Farrokhpour, H., Hadadzadeh, H., Abyar, F., & Rudbari, H. A. (2016). An experimental and quantum chemical study on the non-covalent interactions of a cyclometallated Rh (III) complex with DNA and BSA. RSC Advances, 6(28), 23913–23929. https://doi.org/10.1039/C5RA24540K
  • Ewais, H. A., Taha, M., & Salm, H. N. (2010). Palladium (II) complexes containing dipicolinic acid (DPA), iminodiacetic acid (IDA), and various biologically important ligands. Journal of Chemical & Engineering Data, 55(2), 754–758. https://doi.org/10.1021/je900447n
  • Fang, C.-Y., Lou, D.-Y., Zhou, L.-Q., Wang, J.-C., Yang, B., He, Q.-J., Wang, J.-J., & Weng, Q.-J. (2021). Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacologica Sinica, 42(12), 1951–1969. https://doi.org/10.1038/s41401-021-00620-9
  • Feizi-Dehnayebi, M., Dehghanian, E., & Mansouri-Torshizi, H. (2021). DNA/BSA binding affinity studies of new Pd (II) complex with SS and NN donor mixed ligands via experimental insight and molecular simulation: Preliminary antitumor activity, lipophilicity and DFT perspective. Journal of Molecular Liquids, 344, 117853. https://doi.org/10.1016/j.molliq.2021.117853
  • Förster, T. (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der Physik, 437(1–2), 55–75. https://doi.org/10.1002/andp.19484370105
  • Frisch, M., Trucks, G., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., … Petersson, G. (2009). gaussian 09, Revision d. 01. Gaussian. Inc.
  • Gan, C., Huang, X., Zhan, J., Liu, X., Huang, Y., & Cui, J. (2020). Study on the interactions between B-norcholesteryl benzimidazole compounds with ct-DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 227, 117525. https://doi.org/10.1016/j.saa.2019.117525
  • Gao, Y., Bian, C., Li, N., Yao, K., Xiao, L., Yang, Z., & Guan, T. (2022). Exploring the binding mechanism and adverse toxic effects of chiral phenothrin to human serum albumin: Based on multi-spectroscopy, biochemical and computational approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 282, 121659. https://doi.org/10.1016/j.saa.2022.121659
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0
  • Ghosh, S. (2019). Cisplatin: The first metal based anticancer drug. Bioorganic Chemistry, 88, 102925. https://doi.org/10.1016/j.bioorg.2019.102925
  • Gill, D. (1984). Structure activity relationship of antitumor palladium complexes. In Platinum coordination complexes in cancer chemotherapy (pp. 267–278): Springer.
  • Godzieba, M., & Ciesielski, S. (2020). Natural DNA intercalators as promising therapeutics for cancer and infectious diseases. Current Cancer Drug Targets, 20(1), 19–32. https://doi.org/10.2174/1568009619666191007112516
  • Green, A. E., List, N., Champenois, E., Ware, M., Driver, T., Boguslavskiy, A., … Forbes, R. (2022). Spectroscopic signature of hydrogen transfer dynamics in acetylacetone [Paper presentation]. Paper presented at the International Conference on Ultrafast Phenomena. https://doi.org/10.1364/UP.2022.Th4A.2
  • Haghighi, F. H., Hadadzadeh, H., Darabi, F., Jannesari, Z., Ebrahimi, M., Khayamian, T., Salimi, M., & Rudbari, H. A. (2013). Polypyridyl Ni (II) complex,[Ni (tppz) 2] 2+: Structure, DNA-and BSA binding and molecular modeling. Polyhedron, 65, 16–30. https://doi.org/10.1016/j.poly.2013.08.013
  • Hasan, A. H., Hussen, N. H., Shakya, S., Jamalis, J., Pratama, M. R. F., Chander, S., Kharkwal, H., & Murugesan, S. (2022). In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Structural Chemistry, 33(5), 1645–1665. https://doi.org/10.1007/s11224-022-01996-y
  • Heydari, A., & Mansouri-Torshizi, H. (2016). Design, synthesis, characterization, cytotoxicity, molecular docking and analysis of binding interactions of novel acetylacetonatopalladium (II) alanine and valine complexes with CT-DNA and BSA. RSC Advances, 6(98), 96121–96137. https://doi.org/10.1039/C6RA18803F
  • Hildebrandt, J., Häfner, N., Görls, H., Barth, M.-C., Dürst, M., Runnebaum, I. B., & Weigand, W. (2022). Novel nickel (II), palladium (II), and platinum (II) complexes with O, S bidendate cinnamic acid ester derivatives: An in vitro cytotoxic comparison to ruthenium (II) and osmium (II) analogues. International Journal of Molecular Sciences, 23(12), 6669. https://doi.org/10.3390/ijms23126669
  • Huang, K. (1963). Statistical mechanics. John Wiley & Sons, Inc.
  • Ishtikhar, M., Siddiqui, Z., Husain, F. M., Khan, R. A., & Hassan, I. (2020). Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 225, 117510. https://doi.org/10.1016/j.saa.2019.117510
  • Jahani, S., Aramesh-Boroujeni, Z., & Noroozifar, M. (2021). In vitro anticancer and antibacterial activates of the yttrium (III) complex and its nano-carriers toward DNA cleavage and biological interactions with DNA and BSA; An experimental and computational studie. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 68, 126821. https://doi.org/10.1016/j.jtemb.2021.126821
  • Jakupec, M., Galanski, M., & Keppler, B. (2003). Tumour-inhibiting platinum complexes—state of the art and future perspectives. Reviews of Physiology, Biochemistry and Pharmacology, 146, 1–53.
  • Jash, C., Payghan, P. V., Ghoshal, N., & Suresh Kumar, G. (2014). Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: Spectroscopic analysis, thermodynamics, and molecular modeling studies. The Journal of Physical Chemistry. B, 118(46), 13077–13091. https://doi.org/10.1021/jp5068704
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kathiravan, A., & Renganathan, R. (2009). Photoinduced interactions between colloidal TiO2 nanoparticles and calf thymus-DNA. Polyhedron, 28(7), 1374–1378. https://doi.org/10.1016/j.poly.2009.02.040
  • Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nature Reviews. Cancer, 7(8), 573–584. https://doi.org/10.1038/nrc2167
  • Kennard, E. H. (1938). Kinetic theory of gases (Vol. 483). McGraw-hill New York.
  • Khan, S., Alhumaydhi, F. A., Ibrahim, M. M., Alqahtani, A., Alshamrani, M., Alruwaili, A. S., Hassanian, A. A., & Khan, S. (2022). Recent advances and therapeutic journey of Schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A review. Anti-Cancer Agents in Medicinal Chemistry, 22(18), 3086–3096. https://doi.org/10.2174/1871520622666220511125600
  • Kozachkova, O., Tsaryk, N., Pekhnyo, V., Trachevskyi, V., Rozhenko, A., & Dyakonenko, V. (2018). Complexation of dichloro (ethylenediamine) palladium (II) with 1-hydroxyethylidene-1, 1-diphosphonic acid. Inorganica Chimica Acta, 474, 96–103. https://doi.org/10.1016/j.ica.2018.01.034
  • Kumar, T. A., Kabilan, S., & Parthasarathy, V. (2017). Screening and toxicity risk assessment of selected compounds to target cancer using QSAR and pharmacophore modelling. International Journal of PharmTech Research, 10(4), 219–224. https://doi.org/10.20902/IJPTR.2017.10428
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry, 12(21), 4161–4170. https://doi.org/10.1021/bi00745a020
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • LePecq, J.-B., & Paoletti, C. (1967). A fluorescent complex between ethidium bromide and nucleic acids: Physical—chemical characterization. Journal of Molecular Biology, 27(1), 87–106. https://doi.org/10.1016/0022-2836(67)90353-1
  • Li, L., Guo, Q., Dong, J., Xu, T., & Li, J. (2013). DNA binding, DNA cleavage and BSA interaction of a mixed-ligand copper (II) complex with taurine Schiff base and 1, 10-phenanthroline. Journal of Photochemistry and Photobiology. B, Biology, 125, 56–62. https://doi.org/10.1016/j.jphotobiol.2013.05.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Mahendiran, D., Kumar, R. S., Viswanathan, V., Velmurugan, D., & Rahiman, A. K. (2016). Targeting of DNA molecules, BSA/c-Met tyrosine kinase receptors and anti-proliferative activity of bis (terpyridine) copper (II) complexes. Dalton Transactions (Cambridge, England: 2003), 45(18), 7794–7814. https://doi.org/10.1039/c5dt03831f
  • Manohar, S., & Leung, N. (2018). Cisplatin nephrotoxicity: A review of the literature. Journal of Nephrology, 31(1), 15–25. https://doi.org/10.1007/s40620-017-0392-z
  • Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology, 3(2), 208–IN1. https://doi.org/10.1016/S0022-2836(61)80047-8
  • Mavri, J., & Grdadolnik, J. (2001). Proton potential in acetylacetone. The Journal of Physical Chemistry A, 105(10), 2039–2044. https://doi.org/10.1021/jp003667g
  • Meier-Menches, S. M., Gerner, C., Berger, W., Hartinger, C. G., & Keppler, B. K. (2018). Structure–activity relationships for ruthenium and osmium anticancer agents–towards clinical development. Chemical Society Reviews, 47(3), 909–928. https://doi.org/10.1039/c7cs00332c
  • Milenković, D., Avdović, E., Dimić, D., Sudha, S., Ramarajan, D., Milanović, Ž., Trifunović, S., & Marković, Z. S. (2020). Vibrational and Hirshfeld surface analyses, quantum chemical calculations, and molecular docking studies of coumarin derivative 3-(1-m-toluidinoethylidene)-chromane-2, 4-dione and its corresponding palladium (II) complex. Journal of Molecular Structure, 1209, 127935. https://doi.org/10.1016/j.molstruc.2020.127935
  • Mohamadi, M., Hassankhani, A., Ebrahimipour, S. Y., & Torkzadeh-Mahani, M. (2017). In vitro and in silico studies of the interaction of three tetrazoloquinazoline derivatives with DNA and BSA and their cytotoxicity activities against MCF-7, HT-29 and DPSC cell lines. International Journal of Biological Macromolecules, 94(Pt A), 85–95. https://doi.org/10.1016/j.ijbiomac.2016.09.113
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murray, J. S., & Sen, K. (1996). Molecular electrostatic potentials: Concepts and applications. Elsevier.
  • Najaran, A., Divsalar, A., Saboury, A. A., & Hayati-Roodbary, N. (2021). Evaluation the interaction of human serum albumin with anticancer compound of Palladium (II) complex using competitive site markers. Biomacromolecular Journal, 7(3), 149–158.
  • Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds, part B: Applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons.
  • Navale, G., Singh, S., Agrawal, S., Ghosh, C., Roy Choudhury, A., Roy, P., Sarkar, D., & Ghosh, K. (2022). DNA binding, antitubercular, antibacterial and anticancer studies of newly designed piano-stool ruthenium (ii) complexes. Dalton Transactions (Cambridge, England: 2003), 51(42), 16371–16382. https://doi.org/10.1039/d2dt02577a
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G., Szentpály, L. v., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Parthasarathi, R., Subramanian, V., Roy, D. R., & Chattaraj, P. K. (2004). Electrophilicity index as a possible descriptor of biological activity. Bioorganic & Medicinal Chemistry, 12(21), 5533–5543. https://doi.org/10.1016/j.bmc.2004.08.013
  • Pearson, R. G. (1989). Absolute electronegativity and hardness: Applications to organic chemistry. The Journal of Organic Chemistry, 54(6), 1423–1430. https://doi.org/10.1021/jo00267a034
  • Peyrone, M. (1844). Ueber die einwirkung des ammoniaks auf platinchlorür. Annalen Der Chemie Und Pharmacie, 51(1), 1–29. https://doi.org/10.1002/jlac.18440510102
  • Ponder, J. W., & Case, D. A. (2003). Force fields for protein simulations. Advances in Protein Chemistry, 66, 27–85. https://doi.org/10.1016/s0065-3233(03)66002-x
  • Ponkarpagam, S., Mahalakshmi, G., Vennila, K., & Elango, K. P. (2020). Multi-spectroscopic, voltammetric and molecular docking studies on binding of anti-diabetic drug rosigiltazone with DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 234, 118268. https://doi.org/10.1016/j.saa.2020.118268
  • Rajalakshmi, R., Lalitha, P., Sharma, S. C., Rajiv, A., Chithambharan, A., & Ponnusamy, A. (2021). In Silico studies: Physicochemical properties, drug score, toxicity predictions and molecular docking of organosulphur compounds against Diabetes mellitus. Journal of Molecular Recognition: JMR, 34(11), e2925. https://doi.org/10.1002/jmr.2925
  • Ramezani, N., Moghadam, M. E., Behzad, M., & Zolghadri, S. (2021). Two new oral candidates as anticancer platinum complexes of 1, 3-dimethyl pentyl glycine ligand as doping agents against breast cancer. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 251, 119415. https://doi.org/10.1016/j.saa.2020.119415
  • Reichmann, M., Rice, S., Thomas, C., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76(11), 3047–3053. https://doi.org/10.1021/ja01640a067
  • Reithofer, M. R., Bytzek, A. K., Valiahdi, S. M., Kowol, C. R., Groessl, M., Hartinger, C. G., Jakupec, M. A., Galanski, M. S., & Keppler, B. K. (2011). Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes. Journal of Inorganic Biochemistry, 105(1), 46–51. https://doi.org/10.1016/j.jinorgbio.2010.09.006
  • Rosenberg, B., Van Camp, L., & Krigas, T. (1965). Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 205(4972), 698–699. https://doi.org/10.1038/205698a0
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Sakthi, M., & Ramu, A. (2017). Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes. Journal of Molecular Structure, 1149, 727–735. https://doi.org/10.1016/j.molstruc.2017.08.040
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. In Advances in quantum chemistry (Vol. 11, pp. 115–193). Elsevier.
  • Shahabadi, N., & Zendehcheshm, S. (2020). Evaluation of ct-DNA and HSA binding propensity of antibacterial drug chloroxine: Multi-spectroscopic analysis, atomic force microscopy and docking simulation. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 230, 118042. https://doi.org/10.1016/j.saa.2020.118042
  • Shakya, S., Khan, I. M., Shakya, B., Siddique, Y. H., Varshney, H., & Jyoti, S. (2023). Protective effect of newly synthesized and characterized charge transfer (CT) complex against arecoline induced carcinogenicity in third-instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9: Experimental and theoretical mechanistic insights. Journal of Materials Chemistry B, 11(6), 1262–1278. https://doi.org/10.1039/D2TB02362H
  • Sharma, J., Jiang, Z., Bhutani, A., Behera, P., & Shoemaker, D. P. (2019). A unique copper coordination structure with both mono-and bi-dentate ethylenediamine ligands. CrystEngComm, 21(17), 2718–2726. https://doi.org/10.1039/C8CE02188K
  • Shekhar, B., Vasantha, P., Sathish Kumar, B., Anantha Lakshmi, P., Ravi Kumar, V., & Satyanarayana, S. (2019). Chromium‐metformin ternary complexes: Thermal, DNA interaction and Docking studies. Applied Organometallic Chemistry, 33(9), e5086. https://doi.org/10.1002/aoc.5086
  • Tang, Q., Wang, X., Jin, H., Mi, Y., Liu, L., Dong, M., Chen, Y., & Zou, Z. (2021). Cisplatin-induced ototoxicity: Updates on molecular mechanisms and otoprotective strategies. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, 163, 60–71. https://doi.org/10.1016/j.ejpb.2021.03.008
  • Tercero-Moreno, J., Matilla-Hernandez, A., Gonzalez-Garcia, S., & Niclos-Gutierrez, J. (1996). Hydrolytic species of the ion cis-diaqua (ethylenediamine) palladium (II) complex and of cis-dichloro (ethylenediamine) palladium (II): fitting its equilibrium models in aqueous media with or without chloride ion. Inorganica Chimica Acta, 253(1), 23–29. https://doi.org/10.1016/S0020-1693(96)05105-5
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Tiwari, R., Mahasenan, K., Pavlovicz, R., Li, C., & Tjarks, W. (2009). Carborane clusters in computational drug design: A comparative docking evaluation using AutoDock, FlexX, Glide, and Surflex. Journal of Chemical Information and Modeling, 49(6), 1581–1589. https://doi.org/10.1021/ci900031y
  • Vreven, T., Byun, K. S., Komáromi, I., Dapprich, S., Montgomery, J. A., Jr, Morokuma, K., & Frisch, M. J. (2006). Combining quantum mechanics methods with molecular mechanics methods in ONIOM. Journal of Chemical Theory and Computation, 2(3), 815–826. https://doi.org/10.1021/ct050289g
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455–458. https://doi.org/10.1021/j100809a020
  • Wei, X. L., Xiao, J. B., Wang, Y., & Bai, Y. (2010). Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA? Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 75(1), 299–304. https://doi.org/10.1016/j.saa.2009.10.027
  • Xue, F., Xie, C.-Z., Zhang, Y.-W., Qiao, Z., Qiao, X., Xu, J.-Y., & Yan, S.-P. (2012). Two new dicopper (II) complexes with oxamido-bridged ligand: Synthesis, crystal structures, DNA binding/cleavage and BSA binding activity. Journal of Inorganic Biochemistry, 115, 78–86. https://doi.org/10.1016/j.jinorgbio.2012.05.018
  • Yilmaz, V. T., Icsel, C., Turgut, O. R., Aygun, M., Erkisa, M., Turkdemir, M. H., & Ulukaya, E. (2018). Synthesis, structures and anticancer potentials of platinum (II) saccharinate complexes of tertiary phosphines with phenyl and cyclohexyl groups targeting mitochondria and DNA. European Journal of Medicinal Chemistry, 155, 609–622. https://doi.org/10.1016/j.ejmech.2018.06.035
  • Zhang, S., Yang, H., Zhao, L., Gan, R., Tang, P., Sun, Q., Xiong, X., & Li, H. (2019). Capecitabine as a minor groove binder of DNA: Molecular docking, molecular dynamics, and multi-spectroscopic studies. Journal of Biomolecular Structure & Dynamics, 37(6), 1451–1463. https://doi.org/10.1080/07391102.2018.1461137
  • Zhao, X.-L., Li, Z.-S., Zheng, Z.-B., Zhang, A.-G., & Wang, K.-Z. (2013). pH luminescence switch, DNA binding and photocleavage, and cytotoxicity of a dinuclear ruthenium complex. Dalton Transactions (Cambridge, England: 2003), 42(16), 5764–5777. https://doi.org/10.1039/c3dt33116d

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.