257
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

T cell epitope based vaccine design while targeting outer capsid proteins of rotavirus strains infecting neonates: an immunoinformatics approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4937-4955 | Received 23 Mar 2023, Accepted 05 Jun 2023, Published online: 29 Jun 2023

References

  • Abdel-Azeim, S., Chermak, E., Vangone, A., Oliva, R., & Cavallo, L. (2014). MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories. BMC Bioinformatics, 15(S5), S1. https://doi.org/10.1186/1471-2105-15-S5-S1
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Akhtar, N., Kaushik, V., Grewal, R. K., Wani, A. K., Suwattanasophon, C., Choowongkomon, K., Oliva, R., Shaikh, A. R., Cavallo, L., & Chawla, M. (2022). Immunoinformatics-aided design of a peptide based multiepitope vaccine targeting glycoproteins and membrane proteins against Monkeypox virus. Viruses, 14(11), 2374. https://doi.org/10.3390/v14112374
  • Babji, S., Sindhu, K. N., Selvarajan, S., Ramani, S., Venugopal, S., Khakha, S. A., Hemavathy, P., Ganesan, S. K., Giri, S., Reju, S., Gopalakrishnan, K., Ninan, B., Iturriza-Gomara, M., Srikanth, P., & Kang, G. (2021). Persistence of G10P[11] neonatal rotavirus infections in Southern India. Journal of Clinical Virology : The Official Publication of the Pan American Society for Clinical Virology, 144, 104989. https://doi.org/10.1016/j.jcv.2021.104989
  • Baños, D. M., Lopez, S., Arias, C. F., & Esquivel, F. R. (1997). Identification of a T-helper cell epitope on the rotavirus VP6 protein. Journal of Virology, 71(1), 419–426. https://doi.org/10.1128/jvi.71.1.419-426.1997
  • Barradas-Bautista, D., Cao, Z., Cavallo, L., & Oliva, R. (2020). The CASP13-CAPRI targets as case studies to illustrate a novel scoring pipeline integrating CONSRANK with clustering and interface analyses. BMC Bioinformatics, 21(Suppl 8), 262. https://doi.org/10.1186/s12859-020-03600-8
  • Bernstein, D. I. (2009). Rotavirus overview. The Pediatric Infectious Disease Journal, 28(3 Suppl), S50–S53. https://doi.org/10.1097/INF.0b013e3181967bee
  • Broor, S., Ghosh, D., & Mathur, P. (2003). Molecular epidemiology of rotaviruses in India. The Indian Journal of Medical Research, 118, 59–67.
  • Buesa, J., & Martínez-Costa, C. (2014). Rotavirus infections, vaccines and virus variability. Enfermedades Infecciosas y Microbiologia Clinica, 32(5), 277–279. https://doi.org/10.1016/j.eimc.2014.03.001
  • Bui, H.-H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7, 153. https://doi.org/10.1186/1471-2105-7-153
  • Bui, H.-H., Sidney, J., Li, W., Fusseder, N., & Sette, A. (2007). Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 8, 361. https://doi.org/10.1186/1471-2105-8-361
  • Cárcamo-Calvo, R., Muñoz, C., Buesa, J., Rodríguez-Díaz, J., & Gozalbo-Rovira, R. (2021). The rotavirus vaccine landscape, an update. Pathogens, 10(5), 520. https://doi.org/10.3390/pathogens10050520
  • Carvalho, M. F., & Gill, D. (2019). Rotavirus vaccine efficacy: Current status and areas for improvement. Human Vaccines & Immunotherapeutics, 15(6), 1237–1250. https://doi.org/10.1080/21645515.2018.1520583
  • Castiglione, F., Deb, D., Srivastava, A. P., Liò, P., & Liso, A. (2021). From Infection to Immunity: Understanding the Response to SARS-CoV2 Through In-Silico Modeling. Frontiers in Immunology, 12, 1-16. https://doi.org/10.3389/fimmu.2021.646972
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 1–9. https://doi.org/10.1155/2012/842329
  • Chawla, M., Credendino, R., Poater, A., Oliva, R., & Cavallo, L. (2015). Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site. Journal of the American Chemical Society, 137(1), 299–306. https://doi.org/10.1021/ja510549b
  • Chawla, M., Gorle, S., Shaikh, A. R., Oliva, R., & Cavallo, L. (2021). Replacing thymine with a strongly pairing fifth base: A combined quantum mechanics and molecular dynamics study. Computational and Structural Biotechnology Journal, 19, 1312–1324. https://doi.org/10.1016/j.csbj.2021.02.006
  • Chermak, E., De Donato, R., Lensink, M. F., Petta, A., Serra, L., Scarano, V., Cavallo, L., & Oliva, R. (2016). Introducing a clustering step in a consensus approach for the scoring of protein-protein docking models. PLoS One, 11(11), e0166460. https://doi.org/10.1371/journal.pone.0166460
  • Darden, T., York, D., & Pedersen, L. (1993). Particle Mesh Ewald: An N log (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • David, A., Islam, S., Tankhilevich, E., & Sternberg, M. J. E. (2022). The AlphaFold database of protein structures: A biologist’s guide. Journal of Molecular Biology, 434(2), 167336. https://doi.org/10.1016/j.jmb.2021.167336
  • Dennehy, P. H. (2008). Rotavirus vaccines: An overview. Clinical Microbiology Reviews, 21(1), 198–208. https://doi.org/10.1128/CMR.00029-07
  • Devi, Y. D., Devi, A., Gogoi, H., Dehingia, B., Doley, R., Buragohain, A. K., Singh, C. S., Borah, P. P., Rao, C. D., Ray, P., Varghese, G. M., Kumar, S., & Namsa, N. D. (2020). Exploring rotavirus proteome to identify potential B- and T-cell epitope using computational immunoinformatics. Heliyon, 6(12), e05760. https://doi.org/10.1016/j.heliyon.2020.e05760
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella Pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant enterococcus Faecium bacterium. Gut Pathogens, 14(1), 21. https://doi.org/10.1186/s13099-022-00495-z
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • do Carmo, G. M. I., Yen, C., Cortes, J., Siqueira, A. A., de Oliveira, W. K., Cortez-Escalante, J. J., Lopman, B., Flannery, B., de Oliveira, L. H., Carmo, E. H., & Patel, M. (2011). Decline in diarrhea mortality and admissions after routine childhood rotavirus immunization in Brazil: A time-series analysis. PLoS Medicine, 8(4), e1001024. https://doi.org/10.1371/journal.pmed.1001024
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Flewett, T. H., Bryden, A. S., Davies, H., Woode, G. N., Bridger, J., & Derrick, J. (1974). Relation between viruses from acute gastroenteritis of children and newborn calves. The Lancet, 304(7872), 61–63. https://doi.org/10.1016/S0140-6736(74)91631-6
  • Forstnerič, V., Ivičak-Kocjan, K., Plaper, T., Jerala, R., & Benčina, M. (2017). The role of the C-terminal D0 domain of flagellin in activation of toll like receptor 5. PLoS Pathogens, 13(8), e1006574. https://doi.org/10.1371/journal.ppat.1006574
  • Franco, M. A., Lefevre, P., Willems, P., Tosser, G., Lintermanns, P., & Cohen, J. (1994). Identification of cytotoxic T cell epitopes on the VP3 and VP6 rotavirus proteins. Journal of General Virology, 75(3), 589–596. https://doi.org/10.1099/0022-1317-75-3-589
  • Franco, M. A., Prieto, I., Labbe, M., Poncet, D., Borras-Cuesta, F., & Cohen, J. (1993). An Immunodominant cytotoxic T Cell epitope on the VP7 Rotavirus Protein overlaps the H2 signal Peptide. Journal of General Virology, 74(12), 2579–2586. https://doi.org/10.1099/0022-1317-74-12-2579
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics Protocols handbook (pp. 571–607). Humana Press.
  • Glass, R. I., Bhan, M. K., Ray, P., Bahl, R., Parashar, U. D., Greenberg, H., Durga Rao, C., Bhandari, N., Maldonado, Y., Ward, R. L., Bernstein, D. I., & Gentsch, J. R. (2005). Development of candidate rotavirus vaccines derived from neonatal strains in India. The Journal of Infectious Diseases, 192(s1), S30–S35. https://doi.org/10.1086/431498
  • Gómez-Rial, J., Rivero-Calle, I., Salas, A., & Martinón-Torres, F. (2020). Rotavirus and autoimmunity. The Journal of Infection, 81(2), 183–189. https://doi.org/10.1016/j.jinf.2020.04.041
  • Grewal, R. K., Shaikh, A. R., Gorle, S., Kaur, M., Videira, P. A., Cavallo, L., & Chawla, M. (2021). Structural insights in mammalian sialyltransferases and fucosyltransferases: We have come a long way, but it is still a long way down. Molecules, 26(17), 5203. https://doi.org/10.3390/molecules26175203
  • Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hasan, M., Islam, S., Chakraborty, S., Mustafa, A. H., Azim, K. F., Joy, Z. F., Hossain, M. N., Foysal, S. H., & Hasan, M. N. (2020). Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (Type-1 and Type-2): An exploratory immunoinformatic approach. Journal of Biomolecular Structure & Dynamics, 38(10), 2898–2915. https://doi.org/10.1080/07391102.2019.1647286
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoshino, Y., & Kapikian, A. Z. (2000). Rotavirus serotypes: Classification and importance in epidemiology, immunity, and vaccine development. Journal of Health, Population and Nutrition, 18, 05–14.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Iturriza-Gómara, M., Dallman, T., Bányai, K., Böttiger, B., Buesa, J., Diedrich, S., Fiore, L., Johansen, K., Koopmans, M., Korsun, N., Koukou, D., Kroneman, A., László, B., Lappalainen, M., Maunula, L., Marques, A. M., Matthijnssens, J., Midgley, S., Mladenova, Z., … Gray, J. (2011). Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a Pan-European collaborative strain surveillance network. Epidemiology and Infection, 139(6), 895–909. https://doi.org/10.1017/S0950268810001810
  • Jafarpour, S., Ayat, H., & Ahadi, A. M. (2015). Design and antigenic epitopes prediction of a new trial recombinant multiepitopic rotaviral vaccine: In silico analyses. Viral Immunology, 28(6), 325–330. https://doi.org/10.1089/vim.2014.0152
  • Jalilian, S., Teimoori, A., & Makvandi, M. (2020). In silico characterization of epitopes from human rotavirus VP7 genotype G9 design for vaccine development. Iranian Journal of Allergy, Asthma and Immunology, 18, 664–670. https://doi.org/10.18502/ijaai.v18i6.2179
  • Joshi, A., Joshi, B. C., Mannan, M. A., & Kaushik, V. (2020). Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Informatics in Medicine Unlocked, 19, 100338. https://doi.org/10.1016/j.imu.2020.100338
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kalra, K., Gorle, S., Cavallo, L., Oliva, R., & Chawla, M. (2020). Occurrence and stability of lone pair-π and OH–π interactions between water and nucleobases in functional RNAs. Nucleic Acids Research, 48(11), 5825–5838. https://doi.org/10.1093/nar/gkaa345
  • Kaushik, V., G, S. K., Gupta, L. R., Kalra, U., Shaikh, A. R., Cavallo, L., & Chawla, M. (2022). Immunoinformatics aided design and in-vivo validation of a cross-reactive peptide based multi-epitope vaccine targeting multiple serotypes of dengue virus. Frontiers in Immunology, 13, 679–691. https://doi.org/10.3389/fimmu.2022.865180
  • Kaushik, V., Jain, P., Akhtar, N., Joshi, A., Gupta, L. R., Grewal, R. K., Oliva, R., Shaikh, A. R., Cavallo, L., & Chawla, M. (2022). Immunoinformatics-aided design and in vivo validation of a peptide-based multiepitope vaccine targeting canine circovirus. ACS Pharmacology & Translational Science, 5(8), 679–691. https://doi.org/10.1021/acsptsci.2c00130
  • Khoury, H., Ogilvie, I., El Khoury, A. C., Duan, Y., & Goetghebeur, M. M. (2011). Burden of rotavirus gastroenteritis in the Middle Eastern and North African pediatric population. BMC Infectious Diseases, 11, 9. https://doi.org/10.1186/1471-2334-11-9
  • Kirkwood, C. D., Ma, L.-F., Carey, M. E., & Steele, A. D. (2019). The rotavirus vaccine development pipeline. Vaccine, 37(50), 7328–7335. https://doi.org/10.1016/j.vaccine.2017.03.076
  • Krishnan, G. S., Joshi, A., Akhtar, N., & Kaushik, V. (2021). Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microbial Pathogenesis, 150, 104728. https://doi.org/10.1016/j.micpath.2020.104728
  • Kulkarni, P. S., Desai, S., Tewari, T., Kawade, A., Goyal, N., Garg, B. S., Kumar, D., Kanungo, S., Kamat, V., Kang, G., Bavdekar, A., Babji, S., Juvekar, S., Manna, B., Dutta, S., Angurana, R., Dewan, D., Dharmadhikari, A., Zade, J. K., … Flores, J. (2017). A randomized phase III clinical trial to assess the efficacy of a bovine-human reassortant pentavalent rotavirus vaccine in Indian infants. Vaccine, 35(45), 6228–6237. https://doi.org/10.1016/j.vaccine.2017.09.014
  • Lakshminarayanan, S., & Jayalakshmy, R. (2015). Diarrheal diseases among children in India: Current scenario and future perspectives. Journal of Natural Science, Biology, and Medicine, 6(1), 24–28. https://doi.org/10.4103/0976-9668.149073
  • Lei, Y., Zhao, F., Shao, J., Li, Y., Li, S., Chang, H., & Zhang, Y. (2019). Application of built-in adjuvants for epitope-based vaccines. PeerJ, 6, e6185. https://doi.org/10.7717/peerj.6185
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber Ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics (Oxford, England), 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Mahapatra, S. R., Dey, J., Jaiswal, A., Roy, R., Misra, N., & Suar, M. (2022). Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter Baumannii bacteria. Journal of Immunological Methods, 508, 113325. https://doi.org/10.1016/j.jim.2022.113325
  • Mäkelä, M., Marttila, J., Simell, O., & Ilonen, J. (2004). Rotavirus-specific T-cell responses in young prospectively followed-up children. Clinical and Experimental Immunology, 137(1), 173–178. https://doi.org/10.1111/j.1365-2249.2004.02509.x
  • Martinelli, D. D. (2022). In silico vaccine design: A tutorial in immunoinformatics. Healthcare Analytics, 2, 100044. https://doi.org/10.1016/j.health.2022.100044
  • McNeal, M. M., Basu, M., Bean, J. A., Clements, J. D., Choi, A. H.-C., & Ward, R. L. (2007). Identification of an immunodominant CD4+ T cell epitope in the VP6 protein of rotavirus following intranasal immunization of BALB/c mice. Virology, 363(2), 410–418. https://doi.org/10.1016/j.virol.2007.01.041
  • Mondiale de la Santé, O. (2021). World Health Organization Rotavirus Vaccines: WHO Position Paper–July 2021–Vaccins Antirotavirus: Note de Synthèse de l’OMS–Juillet 2021. Weekly Epidemiological Record = Relevé Épidémiologique Hebdomadaire 96, 28, 219–301.
  • O’Ryan, M. (2017). Rotavirus vaccines: A story of success with challenges ahead. F1000Research, 6, 1517. https://doi.org/10.12688/f1000research.11912.1
  • Oliva, R., Chermak, E., & Cavallo, L. (2015). Analysis and ranking of protein-protein docking models using inter-residue contacts and inter-molecular contact maps. Molecules (Basel, Switzerland), 20(7), 12045–12060. https://doi.org/10.3390/molecules200712045
  • Oliva, R., Shaikh, A. R., Petta, A., Vangone, A., & Cavallo, L. (2021). D936Y and other mutations in the fusion core of the SARS-CoV-2 spike protein heptad repeat 1: Frequency, geographical distribution, and structural effect. Molecules, 26(9), 2622. https://doi.org/10.3390/molecules26092622
  • Oliva, R., Vangone, A., & Cavallo, L. (2013). Ranking multiple docking solutions based on the conservation of inter-residue contacts. Proteins: Structure, Function, and Bioinformatics, 81(9), 1571–1584. https://doi.org/10.1002/prot.24314
  • Parashar, U. D., Burton, A., Lanata, C., Boschi‐Pinto, C., Shibuya, K., Steele, D., Birmingham, M., & Glass, R. I. (2009). Global mortality associated with rotavirus disease among children in 2004. The Journal of Infectious Diseases, 200(s1), S9–S15. https://doi.org/10.1086/605025
  • Parashar, U. D., Gibson, C. J., Bresee, J. S., & Glass, R. I. (2006). Rotavirus and severe childhood diarrhea. Emerging Infectious Diseases, 12(2), 304–306. https://doi.org/10.3201/eid1202.050006
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Reju, S., Srikanth, P., Selvarajan, S., Thomas, R. K., Barani, R., Amboiram, P., Palani, G., & Kang, G. (2022). A shift in circulating rotaviral genotypes among hospitalized neonates. Scientific Reports, 12(1), 2842. https://doi.org/10.1038/s41598-022-06506-y
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC Eluted Ligand Data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Richardson, V., Parashar, U., & Patel, M. (2011). Childhood diarrhea deaths after rotavirus vaccination in Mexico. The New England Journal of Medicine, 365(8), 772–773. https://doi.org/10.1056/NEJMc1100062
  • Robinson, C. L., Romero, J. R., Kempe, A., & Pellegrini, C. (2017). Advisory committee on immunization practices recommended immunization schedule for children and adolescents aged 18 years or younger—United States, 2017. MMWR. Morbidity and Mortality Weekly Report, 66(5), 134–135. https://doi.org/10.15585/mmwr.mm6605e1
  • Schrödinger, L. (2015). The PyMOL Molecular Graphics System. Version 2.3.3.
  • Shukla, M., & Rohatgi, S. (2020). Vaccination with secreted aspartyl proteinase 2 protein from Candida Parapsilosis can enhance survival of mice during C. Tropicalis -mediated systemic candidiasis. Infection and Immunity, 88(10), e00312-20. https://doi.org/10.1128/IAI.00312-20
  • Shuvo, M. S. R., Mukharjee, S. K., & Ahmed, F. (2019). In Silico screening of T-cell and B-Cell Epitopes of rotavirus VP7 and VP4 Proteins for Effective Vaccine Design. bangladesh Journal of Microbiology, 35(1), 45–55. https://doi.org/10.3329/bjm.v35i1.39803
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Tate, J. E., Burton, A. H., Boschi-Pinto, C., & Parashar, U. D. (2016). Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013. Clinical Infectious Diseases, 62(suppl 2), S96–S105. https://doi.org/10.1093/cid/civ1013
  • Thompson, J. D., Gibson, T., & Higgins, D. G. (2003). Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, 00(1), 2-3. https://doi.org/10.1002/0471250953.bi0203s00
  • Upham, J. W., Rate, A., Rowe, J., Kusel, M., Sly, P. D., & Holt, P. G. (2006). Dendritic cell immaturity during infancy restricts the capacity to express vaccine-specific T-cell memory. Infection and Immunity, 74(2), 1106–1112. https://doi.org/10.1128/IAI.74.2.1106-1112.2006
  • van Zundert, G. C. P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Vangone, A., Cavallo, L., & Oliva, R. (2013). Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Proteins: Structure, Function, and Bioinformatics, 81(12), 2210–2220. https://doi.org/10.1002/prot.24423
  • Vangone, A., Oliva, R., & Cavallo, L. (2012). CONS-COCOMAPS: A novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions. BMC Bioinformatics, 13(S4), S19. https://doi.org/10.1186/1471-2105-13-S4-S19
  • Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., & Oliva, R. (2011). COCOMAPS: A web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics (Oxford, England), 27(20), 2915–2916. https://doi.org/10.1093/bioinformatics/btr484
  • Varghese, T., Alokit Khakha, S., Giri, S., Nair, N. P., Badur, M., Gathwala, G., Chaudhury, S., Kaushik, S., Dash, M., Mohakud, N. K., Ray, R. K., Mohanty, P., Kumar, C. P. G., Venkatasubramanian, S., Arora, R., Raghava Mohan, V., E. Tate, J., D. Parashar, U., & Kang, G. (2021). Rotavirus strain distribution before and after introducing rotavirus vaccine in India. Pathogens, 10(4), 416. https://doi.org/10.3390/pathogens10040416
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006
  • Wei, L., Ye, X., Sakurai, T., Mu, Z., & Wei, L. (2022). ToxIBTL: Prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics (Oxford, England), 38(6), 1514–1524. https://doi.org/10.1093/bioinformatics/btac006
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-Web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yazdani, Z., Rafiei, A., Valadan, R., Ashrafi, H., Pasandi, M., & Kardan, M. (2020). Designing a potent L1 protein-based HPV peptide vaccine: A bioinformatics approach. Computational Biology and Chemistry, 85, 107209. https://doi.org/10.1016/j.compbiolchem.2020.107209
  • Yen, C., & Margaret, M. C. (2012). Principles and practice of pediatric infectious diseases, 4th ed. Elsevier.
  • Zhao, W., Pahar, B., & Sestak, K. (2008). Identification of rotavirus VP6-specific CD4+ T cell epitopes in a G1P[8] human rotavirus-infected rhesus macaque. Virology (Auckl), 1, 9–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.