154
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Copper transporter protein (MctB) as a therapeutic target to elicit antimycobacterial activity against tuberculosis

ORCID Icon, , , , & ORCID Icon
Pages 5334-5348 | Received 28 Dec 2022, Accepted 10 Jun 2023, Published online: 20 Jun 2023

References

  • Alame Emane, A. K., Guo, X., Takiff, H. E., & Liu, S. (2021). Drug resistance, fitness and compensatory mutations in mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland), 129, 102091. https://doi.org/10.1016/j.tube.2021.102091
  • Billones, J. B., Carrillo, M. C., Organo, V. G., Macalino, S. J., Sy, J. B., Emnacen, I. A., Clavio, N. A., & Concepcion, G. P. (2016). Toward antituberculosis drugs: In silico screening of synthetic compounds against Mycobacterium tuberculosis l,d-transpeptidase 2. Drug Design, Development and Therapy, 10, 1147–1157. https://doi.org/10.2147/DDDT.S97043
  • BIOVIA, Dassault Systèmes. (Release 2012). Discovery Studio, Version 3.5.
  • Carugo, O., & Pongor, S. (2001). A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Science : A Publication of the Protein Society, 10(7), 1470–1473. https://doi.org/10.1110/ps.690101
  • Chang, K. Y., & Yang, J. R. (2013). Analysis and prediction of highly effective antiviral peptides based on random forests. PloS One, 8(8), e70166. https://doi.org/10.1371/journal.pone.0070166
  • Chiang, C. Y., Centis, R., & Migliori, G. B. (2010). Drug-resistant tuberculosis: Past, present, future. Respirology (Carlton, Vic.), 15(3), 413–432. https://doi.org/10.1111/j.1440-1843.2010.01738.x
  • Chung, B. K., Dick, T., & Lee, D. Y. (2013). In silico analyses for the discovery of tuberculosis drug targets. The Journal of Antimicrobial Chemotherapy, 68(12), 2701–2709. https://doi.org/10.1093/jac/dkt273
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science : A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Combet, C., Blanchet, C., Geourjon, C., & Deléage, G. (2000). NPS@: network protein sequence analysis. Trends in Biochemical Sciences, 25(3), 147–150. https://doi.org/10.1016/s0968-0004(99)01540-6
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter Protein Crystallography, 40, 82–92.
  • Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34(Web Server issue), W116–8. https://doi.org/10.1093/nar/gkl282
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 71. https://doi.org/10.1186/1741-7007-9-71
  • Ekins, S., Freundlich, J. S., Choi, I., Sarker, M., & Talcott, C. (2011). Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends in Microbiology, 19(2), 65–74. https://doi.org/10.1016/j.tim.2010.10.005
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In John M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press. https://doi.org/10.1385/1-59259-890-0:571
  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences : CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Ghazaei, C. (2018). Mycobacterium tuberculosis and lipids: Insights into molecular mechanisms from persistence to virulence. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 23, 63.https://doi.org/10.4103/jrms.JRMS_904_17
  • Gill, W. P., Harik, N. S., Whiddon, M. R., Liao, R. P., Mittler, J. E., & Sherman, D. R. (2009). A replication clock for Mycobacterium tuberculosis. Nature Medicine, 15(2), 211–214.https://doi.org/10.1038/nm.1915
  • Ginsberg, A. M., & Spigelman, M. (2007). Challenges in tuberculosis drug research and development. Nature Medicine, 13(3), 290–294. https://doi.org/10.1038/nm0307-290
  • Good, M., Bakker, D., Duignan, A., & Collins, D. M. (2018). The history of in vivo tuberculin testing in bovines: Tuberculosis, a "One Health" issue. Frontiers in Veterinary Science, 5, 59. https://doi.org/10.3389/fvets.2018.00059
  • Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(Web Server issue), W32–W38. https://doi.org/10.1093/nar/gku293
  • Hurst, L. (2019). Bacteriology. Scientific e-Resources.
  • Isa, M. A., Majumdhar, R. S., & Haider, S. (2018). In silico docking and molecular dynamics simulation of 3-dehydroquinate synthase (DHQS) from Mycobacterium tuberculosis. Journal of Molecular Modeling, 24(6), 132. https://doi.org/10.1007/s00894-018-3637-4
  • Jain, A., & Mondal, R. (2008). Extensively drug-resistant tuberculosis: Current challenges and threats. FEMS Immunology and Medical Microbiology, 53(2), 145–150. https://doi.org/10.1111/j.1574-695X.2008.00400.x
  • Karplus, M., & Petsko, G. A. (1990). Molecular dynamics simulations in biology. Nature, 347(6294), 631–639. https://doi.org/10.1038/347631a0
  • Kim, S. S., Aprahamian, M. L., & Lindert, S. (2019). Improving inverse docking target identification with Z-score selection. Chemical Biology & Drug Design, 93(6), 1105–1116. https://doi.org/10.1111/cbdd.13453
  • Labbé, C. M., Rey, J., Lagorce, D., Vavruša, M., Becot, J., Sperandio, O., Villoutreix, B. O., Tufféry, P., & Miteva, M. A. (2015). MTiOpenScreen: A web server for structure-based virtual screening. Nucleic Acids Research, 43(W1), W448–54. https://doi.org/10.1093/nar/gkv306
  • Land, H., & Humble, M. S. (2018). YASARA: A tool to obtain structural guidance in biocatalytic investigations. Methods in Molecular Biology (Clifton, N.J.), 1685, 43–67. https://doi.org/10.1007/978-1-4939-7366-8_4
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK – A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., Vlieghe, E., Hara, G. L., Gould, I. M., Goossens, H., Greko, C., So, A. D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A. Q., Qamar, F. N., Mir, F., … Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet. Infectious Diseases, 13(12), 1057–1098. https://doi.org/10.1016/S1473-3099(13)70318-9 Erratum in: Lancet Infect Dis. 2014 Jan;14(1):11. Erratum in: Lancet Infect Dis. 2014 Mar;14(3):182.
  • León-Torres, A., Arango, E., Castillo, E., & Soto, C. Y. (2020). CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biological Research, 53(1), 6. https://doi.org/10.1186/s40659-020-00274-7
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M., Bogatyreva, N. S., & Galzitskaia, O. V. [ (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706. https://doi.org/10.1134/S0026893308040195
  • Malathi, K., & Ramaiah, S. (2018). Bioinformatics approaches for new drug discovery: A review. Biotechnology & Genetic Engineering Reviews, 34(2), 243–260. https://doi.org/10.1080/02648725.2018.1502984
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Mlambo, C. K., Warren, R. M., Poswa, X., Victor, T. C., Duse, A. G., & Marais, E. (2008). Genotypic diversity of extensively drug-resistant tuberculosis (XDR-TB) in South Africa. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 12(1), 99–104.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Neyrolles, O., Wolschendorf, F., Mitra, A., & Niederweis, M. (2015). Mycobacteria, metals, and the macrophage. Immunological Reviews, 264(1), 249–263. https://doi.org/10.1111/imr.12265
  • Niederweis, M., Danilchanka, O., Huff, J., Hoffmann, C., & Engelhardt, H. (2010). Mycobacterial outer membranes: In search of proteins. Trends in Microbiology. 18(3), 109–116. https://doi.org/10.1016/j.tim.2009.12.005
  • Padmapriyadarsini, C., Vohra, V., Bhatnagar, A., Solanki, R., Sridhar, R., Anande, L., Muthuvijaylakshmi, M., Bhatia, M., Jeyadeepa, B., Taneja, G., Balaji, S., Shah, P., Saravanan, N., Chauhan, V., Kumar, H., Ponnuraja, C., Livchits, V., Bahl, M., Alavadi, U., Sachdeva, K. S., & Swaminathan, S. (2022). Bedaquiline, delamanid, linezolid and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 76(3), e938–46–e946. https://doi.org/10.1093/cid/ciac528
  • Palucci, I., & Delogu, G. (2018). Host directed therapies for tuberculosis: futures strategies for an ancient disease. Chemotherapy, 63(3), 172–180. https://doi.org/10.1159/000490478
  • Pandit, S. B., Zhang, Y., & Skolnick, J. (2006). TASSER-Lite: An automated tool for protein comparative modeling. Biophysical Journal, 91(11), 4180–4190. https://doi.org/10.1529/biophysj.106.084293
  • Pantsar, T., & Poso, A. (2018). Binding affinity via docking: fact and fiction. Molecules, 23(8), 1899. https://doi.org/10.3390/molecules23081899
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rost, B., Sander, C., & Schneider, R. (1994). Redefining the goals of protein secondary structure prediction. Journal of Molecular Biology, 235(1), 13–26. https://doi.org/10.1016/s0022-2836(05)80007-5
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Saravanan, M., Niguse, S., Abdulkader, M., Tsegay, E., Hailekiros, H., Gebrekidan, A., Araya, T., & Pugazhendhi, A. (2018). Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in Ethiopia. Microbial Pathogenesis, 117, 237–242.https://doi.org/10.1016/j.micpath.2018.02.047
  • Schrödinger, L., & DeLano, W. (2020). PyMOL. http://www.pymol.org/pymol
  • Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y., & Wriggers, W. (2010). Atomic-level characterization of the structural dynamics of proteins. Science (New York, N.Y.), 330(6002), 341–346. https://doi.org/10.1126/science.1187409
  • Shi, X., & Darwin, K. H. (2015). Copper homeostasis in mycobacterium tuberculosis. Metallomics : Integrated Biometal Science, 7(6), 929–934. https://doi.org/10.1039/c4mt00305e
  • Smith, T., Wolff, K. A., & Nguyen, L. (2013). Molecular biology of drug resistance in Mycobacterium tuberculosis. Current Topics in Microbiology and Immunology, 374, 53–80. https://doi.org/10.1007/82_2012_279
  • Telenti, A., Honoré, N., Bernasconi, C., March, J., Ortega, A., Heym, B., Takiff, H. E., & Cole, S. T. (1997). Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: A blind study at reference laboratory level. Journal of Clinical Microbiology, 35(3), 719–723. https://doi.org/10.1128/JCM.35.3.719-723.1997
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Tran-Nguyen, V. K., & Rognan, D. (2020). Benchmarking data sets from PubChem BioAssay data: Current scenario and room for improvement. International Journal of Molecular Sciences, 21(12), 4380. https://doi.org/10.3390/ijms21124380
  • UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Van Wijk, R. C., Ayoun Alsoud, R., Lennernäs, H., & Simonsson, U. S. (2020). Model-informed drug discovery and development strategy for the rapid development of anti-tuberculosis drug combinations. Applied Sciences, 10(7), 2376. https://doi.org/10.3390/app10072376
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Volkamer, A., Kuhn, D., Rippmann, F., & Rarey, M. (2012). DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics (Oxford, England), 28(15), 2074–2075. https://doi.org/10.1093/bioinformatics/bts310
  • Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., Zhou, Z., Han, L., Karapetyan, K., Dracheva, S., Shoemaker, B. A., Bolton, E., Gindulyte, A., & Bryant, S. H. (2012). PubChem’s BioAssay Database. Nucleic Acids Research, 40(Database issue), D400–12. https://doi.org/10.1093/nar/gkr1132
  • Wolschendorf, F., Ackart, D., Shrestha, T. B., Hascall-Dove, L., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S. H., Basaraba, R. J., & Niederweis, M. (2011). Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 108(4), 1621–1626. https://doi.org/10.1073/pnas.1009261108
  • World Health Organization. (2020). Tuberculosis. Who.int. World Health Organization: WHO. https://www.who.int/news-room/fact-sheets/detail/tuberculosis
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Youm, J., & Saier, M. H. Jr. (2012). Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Biochimica et Biophysica Acta, 1818(3), 776–797.https://doi.org/10.1016/j.bbamem.2011.11.015
  • Yu, H., & Dalby, P. A. (2020). A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. Methods in Enzymology, 643, 15–49. https://doi.org/10.1016/bs.mie.2020.04.020
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. https://doi.org/10.1186/1471-2105-9-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.