66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Base pairs with 5-chloroorotic acid and comparison with the natural nucleobase. Structural and spectroscopic study, and three suggested antiviral modified nucleosides

, , , , , , & show all
Pages 4956-4984 | Received 17 Mar 2023, Accepted 05 Jun 2023, Published online: 04 Jul 2023

References

  • Alcolea Palafox, M. (2000). Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77(3), 661–684. https://doi.org/10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J
  • Alcolea Palafox, M. (2014). Structure and conformational analysis of the anti-HIV reverse transcriptase Inhibitor AZT using MP2 and DFT methods. Differences with the natural nucleoside thymidine. Simulation of the 1st phosphorylation step with ATP. Physical Chemistry Chemical Physics : PCCP, 16(45), 24763–24783. https://doi.org/10.1039/c4cp03695f
  • Alcolea Palafox, M. (2018). DFT computations on vibrational spectra: Scaling procedures to improve the wavenumbers. Physical Sciences Reviews, 3(6), 1–30. Article nº UNSP 20170184.https://doi.org/10.1515/psr-2017-0184
  • Alcolea Palafox, M. (2019). Effect of the sulphur atom on S2 and S4 positions of the uracil ring in different DNA:RNA hybrid microhelixes with three nucleotide base pairs. Biopolymers, 110(3), e23247. https://doi.org/10.1002/bip.23247
  • Alcolea Palafox, M., Chalanchi, S. M., Isasi, J., Premkumar, R., Franklin Benial, A. M., & Rastogi, V. K. (2020). Effect of bromine atom on the different tautomeric forms of microhydrated 5-bromouracil and 5-bromocytosine, in the DNA:RNA microhelix and in the interaction with human proteins. Journal of Biomolecular Structure & Dynamics, 38(18), 5443–5463. https://doi.org/10.1080/07391102.2019.1704878
  • Alcolea Palafox, M., Nagar, K., Singh, S. P., Singh, B. P., Mishra, P., Benial, A. M. F., & Rastogi, V. K. (2021). Vibrational analysis, and tautomerism of biomolecule 5-carboxy-2-thiouracil, comparison with Uracil and 2-thiouracil: A theoretical study. Asian J. Physics, 30(2), 353–380.
  • Alcolea Palafox, M., Franklin Benial, A. M., & Rastogi, V. K. (2019). Biomolecules of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil: A DFT study of the hydration, molecular docking and effect in DNA:RNA microhelices. International Journal of Molecular Sciences, 20(14), 3477–3507. https://doi.org/10.3390/ijms20143477
  • Alcolea Palafox, M., Kattan, D., de Pedraza Velasco, M. L., Isasi Marín, J., Posada-Moreno, P., Rani, K., Singh, S. P., & Rastogi, V. K. (2023). Base pairs with 4-amino-3-nitrobenzonitrile: Comparison with the natural WC pairs. Dimer and tetramer forms, Infrared and Raman spectra, and several proposed antiviral modified nucleosides. Journal of Biomolecular Structure & Dynamics, 41(10), 4444-4466. https://doi.org/10.1080/07391102.2022.2069864
  • Alcolea Palafox, M., Núñez, J. L., & Gil, M. (2002a). Theoretical quantum chemical study of benzoic acid: Geometrical parameters and vibrational wavenumbers. International Journal of Quantum Chemistry, 89(1), 1–24. https://doi.org/10.1002/qua.10202
  • Alcolea Palafox, M., Núñez, J. L., & Gil, M. (2002b). Accurate scaling of the vibrational spectra of aniline and several derivatives. Journal of Molecular Structure (Theochem), 593(1-3), 101–131. https://doi.org/10.1016/S0166-1280(02)00319-6
  • Alcolea Palafox, M., & Rastogi, V. K. (2002). Quantum Chemical predictions of the vibrational spectra of polyatomic molecules. The uracil molecule and two derivatives. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 58(3), 411–440. https://doi.org/10.1016/S1386-1425(01)00509-1
  • Alcolea Palafox, M., Rastogi, V. K., Kumar, S., & Joe, H. (2013). The biomolecule of 5-bromocytosine: FT-IR and FT-Raman spectra and DFT calculations. Identification of the tautomers in the isolated state and simulation the spectra in the solid state. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 111, 104–122. https://doi.org/10.1016/j.saa.2013.03.022
  • Ami, E.-I., & Ohrui, H. (2021). Intriguing antiviral modified nucleosides: A retrospective view into the future treatment of COVID-19. ACS Medicinal Chemistry Letters, 12(4), 510–517. https://doi.org/10.1021/acsmedchemlett.1c00070
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bekiroglu, S., & Kristiansson, O. (2002). Hydrogen-bonded neutral and anionic lamellar networks: Crystal structures of bis(O,O′,O″-hydroorotato)disilver(i) dihydrate, potassium hydroorotate and rubidium hydroorotate. Ab initio calculations on orotic acid and the hydroorotate anion. Journal of the Chemical Society, Dalton Transactions, 7(7), 1330–1335. https://doi.org/10.1039/b110386p
  • Boys, S. F., & Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4), 553–566. https://doi.org/10.1080/00268977000101561
  • Burrows, A. D., Mingos, D. M. P., White, A. J. P., & Williams, D. J. (1996). 5-Aminoorotic acid, a versatile ligand with the ability to exhibit differing co-ordination and hydrogen-bonding modes: Synthesis and crystal structures of platinum(II) complexes. Journal of the Chemical Society, Dalton Transactions, 19(19), 3805–3812. https://doi.org/10.1039/dt9960003805
  • Carpenter, J. E., & Weinhold, F. (1988). Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. Journal of Molecular Structure (Theochem), 169, 41–62. https://doi.org/10.1016/0166-1280(88)80248-3
  • Cuellar, A., Alcolea Palafox, M., Rastogi, V. K., Kiefer, W., Schlücker, S., & Rathor, S. K. (2014). FT-IR and FT-Raman spectra of 5-fluoroorotic acid with solid state simulation by DFT methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 132, 430–445. https://doi.org/10.1016/j.saa.2014.04.107
  • El-Sayed, A. A., Tamara Molina, A., Álvarez-Ros, M. C., & Alcolea Palafox, M. (2015). Conformational analysis of the anti-HIV Nikavir prodrug: Comparisons with AZT and Thymidine, and establishment of structure-activity relationships/tendencies in other 6′-derivatives. Journal of Biomolecular Structure & Dynamics, 33(4), 723–748. https://doi.org/10.1080/07391102.2014.909743
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2019). Gaussian 16, Revision C.01., Gaussian, Inc.
  • Guidoni, L., Gontrani, L., Bencivenni, L., Sadun, C., & Ballirano, P. (2009). Overcoming the inadequacy of X-ray powder diffraction in reliable hydrogen location with the aid of first principles calculations: Crystal structure determination of orotaldehyde monohydrate. The Journal of Physical Chemistry. A, 113(1), 353–359. https://doi.org/10.1021/jp809076t
  • Hilal, R., Zaky, Z., & Elroby, S. A. K. (2004). Electronic structure of orotic acid I. Geometry, conformational preference and tautomerism. Journal of Molecular Structure (Theochem), 685(1-3), 35–42. https://doi.org/10.1016/j.theochem.2004.04.027
  • Hunter, R. S., & van Mourik, T. (2012). DNA base stacking: The stacked uracil/uracil and thymine/thymine minima. Journal of Computational Chemistry, 33(27), 2161–2172. https://doi.org/10.1002/jcc.23052
  • Hsu, C.-H., Hu, R., Dutschman, G. E., Yang, G., Krishnan, P., Tanaka, H., Baba, M., & Cheng, Y.-C. (2007). Comparison of the phosphorylation of 4′-ethynyl 2′,3′-dihydro-3′-deoxythymidine with that of other anti-human immunodeficiency virus thymidine analogs. Antimicrobial Agents and Chemotherapy, 51(5), 1687–1693. https://doi.org/10.1128/AAC.01432-06
  • Kattan, D., Alcolea Palafox, M., Rathor, S. K., & Rastogi, V. K. (2016). A DFT analysis of the molecular structure, vibrational spectra and other molecular properties of 5-nitrouracil and comparison with uracil. Journal of Molecular Structure, 1106, 300–315. https://doi.org/10.1016/j.molstruc.2015.10.096
  • Kostova, I., Rastogi, V. K., Kiefer, W., & Kostovski, A. (2006). New lanthanum (III) complex – Synthesis, characterization, and cytotoxic activity. Archiv Der Pharmazie, 339(11), 598–607. https://doi.org/10.1002/ardp.200600077
  • Kostova, I., Traykova, M., & Rastogi, V. K. (2008). New lanthanide complexes with antioxidant activity. Medicinal Chemistry , 4(4), 371–378. https://doi.org/10.2174/157340608784872181
  • Kozlov, I. A., & Orgel, L. E. (2000). Nonenzymatic template-directed synthesis of RNA from monomers. Molecular Biology, 34(6), 781–789. https://doi.org/10.1023/A:1026663422976
  • Lalioti, N., Raptopoulou, C. P., Terzis, A., Panagiotopoulos, A., Perlepes, S. P., & Manessi-Zoupa, E. (1998). New metal-binding modes for 5-aminoorotic acid: Preparation, characterization and crystal structures of zinc(II) complexes. Journal of the Chemical Society, Dalton Transactions, 8(8), 1327–1334. https://doi.org/10.1039/a800014j
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Muregi, F. W., Ohta, I., Masato, U., Kino, H., & Ishih, A. (2011). Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness. PLoS ONE, 6(6), e21251, 1-12. https://doi.org/10.1371/journal.pone.0021251
  • Ortiz, S., Alcolea Palafox, M., Rastogi, V. K., & Tomer, R. (2012). Solid state simulation of tetramer form of 5-aminoorotic acid: The vibrational spectra and molecular structure study by using MP2 and DFT calculations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 97, 948–962. https://doi.org/10.1016/j.saa.2012.06.048
  • Ortiz, S., Alvarez-Ros, M. C., Alcolea Palafox, M., Rastogi, V. K., Balachandran, V., & Rathor, S. K. (2014). FT-IR and FT-Raman spectra of 6-chlorouracil: Molecular structure, tautomerism and solid state simulation. A comparison between 5-chlorouracil and 6-chlorouracil. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 130, 653–668. https://doi.org/10.1016/j.saa.2014.04.009
  • Palafox, M. A., de Pedraza Velasco, M. L., Isasi Marín, J., & Posada-Moreno, P. (2022). How proton transfer affects the helical parameters in DNA:DNA microhelices. Journal of Biomolecular Structure & Dynamics, 40(24), 13759–13777. https://doi.org/10.1080/07391102.2021.1994880
  • Palafox, M. A., Kattan, D., & Afseth, N. K. (2018). FT-IR spectra of the anti-HIV nucleoside analogue d4T (Stavudine). Solid state simulation by DFT methods and scaling by different procedures. Journal of Molecular Structure, 1157, 587–601. https://doi.org/10.1016/j.saa.2017.07.018
  • Portalone, G. (2008). Redetermination of orotic acid monohydrate. Acta Crystallographica. Section E, Structure Reports Online, 64(Pt 4), o656. https://doi.org/10.1107/S160053680800562X
  • Rani, K., Prakash, J., Singh, S. P., Vats, J. K., Palafox, M. A., & Rastogi, V. K. (2017). Molecular structure and vibrational spectra of 2-thiouracil: A comparison with uracil. Asian Journal of Physics, 26(11-12), 365–373. https://doi.org/10.54955/AJP.26.11-12.2017.365-373
  • Rastogi, V. K., Singh, C., Jain, V., & Alcolea Palafox, M. (2000). FTIR and FT-Raman spectra of 5-methyluracil (thymine). Journal of Raman Spectroscopy, 31(11), 1005–1012. https://doi.org/10.1002/1097-4555(200011)31:11<1005::AID-JRS636>3.0.CO;2-7
  • Riley, K. E., & Hobza, P. (2011). Noncovalent interactions in biochemistry. WIREs Computational Molecular Science, 1(1), 3–17. https://doi.org/10.1002/wcms.8
  • Riley, K. E., Pitonák, M., Jurecka, P., & Hobza, P. (2010). Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chemical Reviews, 110(9), 5023–5063. https://doi.org/10.1021/cr1000173
  • Riviere, K., Kieler-Ferguson, H. M., Katherine, J., & Szoka, F. C. Jr (2011). Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. Journal of Controlled Release : Official Journal of the Controlled Release Society, 153(3), 288–296. https://doi.org/10.1016/j.jconrel.2011.05.005
  • Saenger, W. (1984). Principles in nucleic acid structure. Springer Verlag Publishers.
  • Schroeder, P. E., Patel, D., & Hasinoff, B. B. (2008). The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(9), 1780–1785. https://doi.org/10.1124/dmd.108.021626
  • Seminario, J. M., & Politzer, P. (Eds) (1995). Modern density functional theory: A tool for chemistry (Vol. 2). Elsevier.
  • Singh, S. P., Alcolea Palafox, M., & Rastogi, V. K. (2019). Solid state simulation of the FT-IR and FT-Raman spectra of 5-fluoroorotic and 5-chloroorotic acids. Asian J. Physics, 28(6), 401–412.
  • Srivastav, G., Yadav, B., Kumar Yadav, R., & Yadav, R. A. (2019). DFT studies of molecular structures conformers and vibrational characteristics of sulfanilamide. Computational and Theoretical Chemistry, 1167, 112588. https://doi.org/10.1016/j.comptc.2019.112588
  • van Mourik, T. (2009). Comment on ‘To stack or not to stack: Performance of a new density functional for the uracil and thymine dimers’ [Chem. Phys. Lett. 459 (2008) 164]. Chemical Physics Letters, 473(1-3), 206–208. https://doi.org/10.1016/j.cplett.2009.03.050
  • Wellington, M., & Rustchenko, E. (2005). 5-Fluoro-orotic acid induces chromosome alterations in Candida albicans. Yeast (Chichester, England), 22(1), 57–70. https://doi.org/10.1002/yea.1191
  • Xu, X., & Goddard III, W. A. (2004). The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2673–2677. https://doi.org/10.1073/pnas.0308730100
  • Zhao, Y., & Truhlar, D. G. (2008a). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157–167. https://doi.org/10.1021/ar700111a
  • Zhao, Y., & Truhlar, D. G. (2008b). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215–241. https://doi.org/10.1007/s00214-007-0310-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.