234
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis, computational molecular docking studies of novel heterocyclics bearing 1,2,4–triazole, 1,3,4–oxadiazole conjugates as potent antibacterial and antitubercular agents

, , , , &
Pages 5376-5389 | Received 30 Dec 2022, Accepted 11 Jun 2023, Published online: 20 Jun 2023

References

  • Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodiummurale leaf extract. Journal of Saudi Chemical Society, 18(4), 356–363. https://doi.org/10.1016/j.jscs.2013.09.011
  • Allaka, T. R., & Anireddy, J. S. (2019). In vitro and molecular docking and analysis of isoxazoline derivatives with DPPH. Current Organic Chemistry, 23, 1991.
  • Antoine, D., Olivier, M., & Vincent, Z. (2014). iLOGP, a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54, 3284.
  • Antoine, D., Olivier, M., & Vincent, Z. (2017). Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.
  • Bekhit, A. A., & Baraka, A. M. (2005). Novel milrinone analogs of pyridine3-carbonitrile derivatives as promising cardiotonic agents. European Journal of Medicinal Chemistry, 40(12), 1405–1413. https://doi.org/10.1016/j.ejmech.2005.06.005
  • Bhatia, S., Kumar, S., Bhadoriya, K. S., Singh, V., & Kumar, A. (2021). Synthesis and biological evaluation of 2-phenylpyridine derivatives as potential antitubercular agents. Bioorganic Chemistry, 115, 105164.
  • Bjorkelid, C., Bergfors, T., Raichurkar, A. K., Mukherjee, K., Malolanarasimhan, K., Bandodkar, B., & Jones, T. A. (2013). Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. The Journal of Biological Chemistry, 288(25), 18260–18270. https://doi.org/10.1074/jbc.M113.476473
  • Chen, T., Lu, Y., Zhou, X., Zhu, X., Li, H., Lu, H., & Liu, X. (2019). Design, synthesis and evaluation of novel pyridine-containing compounds as potential antitubercular agents. European Journal of Medicinal Chemistry, 164, 18–30.
  • Cui, L. J., Xie, Z. F., Piao, H. R., Li, G., Chai, K. Y., & Quan, Z. S. (2005). Synthesis and anticonvulsant activity of 1-substituted-7-benzyloxy-4,5-dihydro-[1,2,4]triazolo [4,3-a]quinoline. Biological & Pharmaceutical Bulletin, 28(7), 1216–1220. https://doi.org/10.1248/bpb.28.1216
  • D. M., Elsisi, A., Ragab, A. A., Elhenawy, A. A., Farag, A. M., Ali., & Y. A., Ammar. (2022). Experimental and theoretical investigation for 6-Morpholinosulfonylquinoxalin-2(1H)-one and its hydrazone derivate: Synthesis, characterization, tautomerization and antimicrobial evaluation. Journal of Molecular Structure, 1247, 131314. https://doi.org/10.1016/j.molstruc.2021.131314
  • Debnath, S. K., Debnath, M., & Srivastava, R. (2022). Opportunistic etiological agents causing lung infections: Emerging need to transform lung-targeted delivery. Heliyon, 8(12), e12620. https://doi.org/10.1016/j.heliyon.2022.e12620
  • Deepkumar, J., & Suryakant Parikh, K. (2014). Synthesis and antimicrobial evaluation of 1,3,4–oxadiazole–based chalcone derivatives. Medicinal Chemistry Research, 23, 1855.
  • Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S., & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244, 114006. https://doi.org/10.1016/j.ijheh.2022.114006
  • Devi, N. R., Kumar, A., Srivastava, K., Ali, B., & Srivastava, S. K. (2019). Synthesis, characterization and antitubercular evaluation of 2,6-disubstituted pyridine derivatives. European Journal of Medicinal Chemistry, 126, 880–891.
  • Dincel, E. D., Akdağ, Ç., Kayra, T., Coşar, E. D., Aksoy, M. O., Akalın-Çiftçi, G., & Ulusoy-Güzeldemirci, N. (2022). Design, synthesis, characterization, molecular docking studies and anticancer activity evaluation of novel hydrazinecarbothioamide, 1,2,4-triazole-3-thione, 4-thiazolidinone and 1,3,4-oxadiazole derivatives. Journal of Molecular Structure, 1268, 133710. https://doi.org/10.1016/j.molstruc.2022.133710
  • Fatahala, S. S., Shalaby, E. A., Kassab, S. E., & Mohamed, M. S. (2015). A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: Synthesis, docking studies, and biological evaluation. Anti-Cancer Agents in Medicinal Chemistry, 15(4), 517–526. https://doi.org/10.2174/1871520615666150105113946
  • Fraser, J. L., Mwatondo, A., Alimi, Y. H., Varma, J. K., & Vilas, V. J. D. R. (2021). Healthcare-associated outbreaks of bacterial infections in Africa, 2009–2018: A review. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 103, 469–477. https://doi.org/10.1016/j.ijid.2020.12.030
  • Gomha, S. M., Muhammad, Z. A., Abdel-Aziz, M. R., Abdel-Aziz, H. M., Gaber, H. M., & Elaasser, M. M. (2018). One-pot synthesis of new thiadiazolyl-pyridines as anticancer and antioxidant agents. Journal of Heterocyclic Chemistry, 55(2), 530–536. https://doi.org/10.1002/jhet.3088
  • Guda, D. R., Park, S. J., Lee, M. W., Kim, T. J., & Lee, M. E. (2013). Synthesis and cytotoxicity of 3-aryl acrylic amide derivatives of the simplified saframycin–ecteinascidin skeleton prepared from l-dopa. European Journal of Medicinal Chemistry, 62, 84–88. https://doi.org/10.1016/j.ejmech.2012.12.035
  • Guimaraes, C. R., Boger, D. L., & Jorgensen, W. L. (2005). Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from monte carlo simulations. Journal of the American Chemical Society, 127(49), 17377–17384. https://doi.org/10.1021/ja055438j
  • Gupta, O., Pradhan, T., & Chawla, G. (2023). An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. Journal of Molecular Structure, 1274, 134487. https://doi.org/10.1016/j.molstruc.2022.134487
  • Harish, K. P., Mohana, K. N., Mallesha, L., & Prasanna Kumar, B. N. (2013). Synthesis of novel 1-5-(4-methoxy-phenyl)-1,3,4] oxadiazol-2-yl]-piperazine derivatives and evaluation of there in a Vivo anticonvulsant activity. European Journal of Medicinal Chemistry, 65, 276–283. https://doi.org/10.1016/j.ejmech.2013.04.054
  • Huque, R., Elsey, H., Fieroze, F., Hicks, J. P., Huque, S., Bhawmik, P., Walker, I., & Newell, J. (2020). “Death is a better option than being treated like this”: A prevalence survey and qualitative study of depression among multi-drug resistant tuberculosis in-patients. BMC Public Heal, 20, 848.
  • Kamboj, A., Sihag, B., Brar, D. S., Kaur, A., & Salunke, D. B. (2021). Structure-activity relationship in β-carboline derived anti-malarial agents. European Journal of Medicinal Chemistry, 221, 113536. https://doi.org/10.1016/j.ejmech.2021.113536
  • Karczmarzy, K. Z., Swatko-Ossor, M., Wysocki, W., Drozd, M., Ginalska, G., Pachuta-Stec, A., & Pitucha, M. (2020). New application of 1,2,4-triazole derivatives as antitubercular agents in vitro screening and docking studies. Molecules, 25(24), 6033–6031. https://doi.org/10.3390/molecules25246033
  • Kumar, G. S., Amit, A. K., Rao, A. T., & Anjali, J. (2022). Design, synthesis of novel benzoxepine based 1,2,3–triazoles: Molecular docking and in vitro antimicrobial activity evaluation. ChemistrySelect, 7(21), e202200683.
  • Liu, C., Fei, Q., Pan, N., & Wu, W. (2022). Design, synthesis, and antifungal activity of novel 1,2,4-triazolo[4,3-c]trifluoromethylpyrimidine derivatives bearing the thioether moiety. Frontiers in Chemistry, 10, 939644. https://doi.org/10.3389/fchem.2022.939644
  • Martinez-Gualda, B., Pu, S. Y., Froeyen, M., Herdewijn, P., Einav, S., & Jonghe, S. D. (2020). Structure-activity relationship study of the pyridine moiety of isothiazolo[4,3-b] pyridines as antiviral agents targeting cyclin G-associated kinase. Bioorganic & Medicinal Chemistry, 28(1), 115188. https://doi.org/10.1016/j.bmc.2019.115188
  • McConkey, B. J., Sobolev, V., & Edelman, M. (2002). The performance of current methods in ligand-protein docking. Current Science, 83, 845.
  • Mehanna, A. (2013). Antidiabetic agents: Past, present, and future. Future Medicinal Chemistry, 5(4), 411–430. https://doi.org/10.4155/fmc.13.13
  • Mioc, M., Avram, S., Bercean, V., Kurunczi, L., Ghiulai, R. M., Oprean, C., Coricovac, D. E., Dehelean, C., Mioc, A., Balan-Porcarasu, M., Tatu, C., & Soica, C. (2018). Design, synthesis and biological activity evaluation of Substituted 1H-5-mercapto-1,2,4-triazole derivatives as antiproliferative agents in colorectal cancer. Frontiers in Chemistry, 6, 373. https://doi.org/10.3389/fchem.2018.00373
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4, and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mussie, K. M., Gradmann, C., & Manyazewal, T. (2020). Bridging the gap between policy and practice: A qualitative analysis of providers’ field experiences tinkering with directly observed therapy in patients with drug-resistant tuberculosis in Addis Ababa, Ethiopia. BMJ, 10, 035272.
  • Mustafa, M., Abuo-Rahma, G. E. A., Abd El-Hafeez, A. A., Ahmed, E. R., Abdelhamid, D., Ghos, P., & Hayallah, A. M. (2021). Discovery of antiproliferative and anti-FAK inhibitory activity of 1,2,4-triazole derivatives containing acetamido carboxylic acid skeleton. Bioorganic & Medicinal Chemistry Letters, 40, 127965. https://doi.org/10.1016/j.bmcl.2021.127965
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., Geoffrey, R., & Hutchison, R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 33, 1–14.
  • Pachuta-Stec, A. (2022). Antioxidant activity of 1,2,4-triazole and its derivatives. Mini Reviews in Medicinal Chemistry, 22(7), 1081–1094. https://doi.org/10.2174/1389557521666210401091802
  • Palekar, S. V., Damle, J. A., & Shukla, S. R. (2009). Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide. European Journal of Medicinal Chemistry, 44(12), 5112–5116. https://doi.org/10.1016/j.ejmech.2009.07.023
  • Paprocka, R., Kołodziej, P., Wiese-Szadkowska, M., Helmin-Basa, A., & Bogucka-Kocka, A. (2022). Evaluation of anthelmintic and anti-inflammatory activity of 1,2,4-triazole derivatives. Molecules, 27(14), 4488. https://doi.org/10.3390/molecules27144488
  • Paul, A., Guria, T., Roy, P., & Maity, A. (2022). Recent development of heterocyclic compounds with indazole moiety as potential antiparasitic agents. Current Topics in Medicinal Chemistry, 22(14), 1160–1176. https://doi.org/10.2174/1568026622666220415224139
  • Pawar, A.., Jha, P., Chopra, M., Chaudhry, U., & Saluja, D. (2020). Screening of natural compounds that targets glutamate racemase of Mycobacterium tuberculosis reveals the antitubercular potential of flavonoids. Scientific Reports, 10(1), 949. https://doi.org/10.1038/s41598-020-57658-8
  • Qiu, L., Li, W., Yang, Y., Liu, Y., & Gao, H. (2020). Design, synthesis and biological evaluation of pyridinyl-pyrrole derivatives as novel anti-tuberculosis agents. Bioorganic Chemistry, 102, 104056.
  • Rao, A. T., Bhaskar, K., Naveen, P., Naveen, K., Kalyani, C., & Shree, A. J. (2022). Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones aa potent antibacterial agents: Synthesis and computational molecular modeling. Journal of Molecular Diversity, 26, 1581.
  • Renard, J. F., Lecomte, F., Hubert, P., De Leval, X., & Pirotte, B. (2014). N-(3-Arylaminopyridin-4-yl) alkanesulfonamides as pyridine analogs of nimesulide: Cyclooxygenases inhibition, anti-inflammatory studies, and insight on metabolism. European Journal of Medicinal Chemistry, 74, 12–22. https://doi.org/10.1016/j.ejmech.2013.12.033
  • Richter, A., Narula, G., Rudolph, I., Seidel, R. W., Wagner, C., Av-Gay, Y., & Imming, P. (2022). Efficient synthesis of benzothiazinone analogues with activity against intracellular Mycobacterium tuberculosis. ChemMedChem, 17(6), e202100733. https://doi.org/10.1002/cmdc.202100733
  • Sangwan, R., Rajan, R., & Mandal, P. K. (2018). HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. European Journal of Medicinal Chemistry, 158, 620–706. https://doi.org/10.1016/j.ejmech.2018.08.073
  • Sarg, M. T., Koraa, M. M., Bayoumi, A. H., & Gilil, S. E. (2015). Synthesis of pyrroles and condensed pyrroles as anti-inflammatory agents with multiple activities and their molecular docking study. Open Journal of Medicinal Chemistry, 05(04), 49–96. https://doi.org/10.4236/ojmc.2015.54005
  • Stingaci, E., Zveaghinteva, M., Pogrebnoi, S., Lupascu, L., Valica, V., Uncu, L., Smetanscaia, A., Drumea, M., Petrou, A., Ciric, A., Glamoclija, J., Sokovic, M., Kravtsov, V., Geronikaki, A., & Macaev, F. (2020). New vinyl-1,2,4-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. Bioorganic & Medicinal Chemistry Letters, 30(17), 127368. https://doi.org/10.1016/j.bmcl.2020.127368
  • Sun, J., Zhu, H., Yang, Z. M., & Zhu, H. L. (2013). Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinoline-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as a novel anticancer agent. European Journal of Medicinal Chemistry, 60, 23–28. https://doi.org/10.1016/j.ejmech.2012.11.039
  • Venketaraman, V. (2020). Recent advances in mycobacterial research. Journal of Clinical Medicine, 9(8), 2650. https://doi.org/10.3390/jcm9082650
  • Verma, K. K., Singh, U. K., & Jain, J. (2020). Screening of some novel 4, 5 disubstituted 1, 2, 4-triazole-3-thiones for anticonvulsant activity. Central Nervous System Agents in Medicinal Chemistry, 20(1), 41–48. https://doi.org/10.2174/1871524919666191209103003
  • Wang, R., Lu, Y., & Wang, S. (2003). Comparative evaluation of 11 scoring functions for molecular docking. Journal of Medicinal Chemistry, 46(12), 2287–2303. https://doi.org/10.1021/jm0203783
  • Wang, S., Liu, H., Wang, X., Lei, K., Li, G., Li, J., Liu, R., & Quan, Z. (2020). Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. European Journal of Medicinal Chemistry, 206, 112672. https://doi.org/10.1016/j.ejmech.2020.112672
  • Zafar, W., Sumrra, S. H., & Chohan, Z. H. (2021). A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. European Journal of Medicinal Chemistry, 222, 113602. https://doi.org/10.1016/j.ejmech.2021.113602
  • Zampieri, D., Fortuna, S., Romano, M., De Logu, A., Cabiddu, G., Sanna, A., & Mamolo, M. G. (2022). Synthesis, biological evaluation and computational studies of new hydrazide derivatives containing 1,3,4-oxadiazole as antitubercular agents. International Journal of Molecular Sciences, 23(23), 15295. https://doi.org/10.3390/ijms232315295
  • Zhang, S., Tan, X., Liang, C., & Zhang, W. (2020). Design, synthesis, and antifungal evaluation of novel coumarin-pyrrole hybrids. Journal of Heterocyclic Chemistry, 23, 1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.