175
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Allosteric inhibition of dengue virus RNA-dependent RNA polymerase by Litsea cubeba phytochemicals: a computational study

, , , , , , , ORCID Icon & show all
Pages 5402-5414 | Received 12 Feb 2023, Accepted 11 Jun 2023, Published online: 26 Jun 2023

References

  • Ackermann, M., & Padmanabhan, R. (2001). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. The Journal of Biological Chemistry, 276(43), 39926–39937. https://doi.org/10.1074/jbc.M104248200
  • Bharadwaj, S., Lee, K. E., Dwivedi, V. D., Yadava, U., Panwar, A., Lucas, S. J., Pandey, A., & Kang, S. G. (2019). Discovery of Ganoderma Lucidum Triterpenoids as potential inhibitors against dengue virus NS2B-NS3 protease. Scientific Reports, 9(1), 19059. https://doi.org/10.1038/s41598-019-55723-5
  • Bhatnagar, P., Sreekanth, G. P., Murali-Krishna, K., Chandele, A., & Sitaraman, R. (2021). Dengue virus non-structural protein 5 as a versatile, multi-functional effector in host–pathogen interactions. Frontiers in Cellular and Infection Microbiology, 11, 574067. https://doi.org/10.3389/fcimb.2021.574067
  • Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R. W., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. 84–es.
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Protein Crystallography: Methods and Protocols, 1607, 627–641.
  • Cheng, C.-C., Sofiyatun, E., Chen, W.-J., & Wang, L.-C. (2021). Life as a vector of dengue virus: The antioxidant strategy of mosquito cells to survive viral infection. Antioxidants, 10(3), 395. https://doi.org/10.3390/antiox10030395
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S.; Olson, A.J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250.
  • Dwivedi, V. D., Arya, A., Yadav, P., Kumar, R., Kumar, V., & Raghava, G. P. S. (2021). DenvInD: Dengue virus inhibitors database for clinical and molecular research. Briefings in Bioinformatics, 22(3), bbaa098. https://doi.org/10.1093/bib/bbaa098
  • Dwivedi, V. D., Bharadwaj, S., Afroz, S., Khan, N., Ansari, M. A., Yadava, U., Tripathi, R. C., Tripathi, I. P., Mishra, S. K., & Kang, S. G. (2021). Anti-dengue infectivity evaluation of bioflavonoid from Azadirachta Indica by dengue virus serine protease inhibition. Journal of Biomolecular Structure and Dynamics, 39(4), 1417–1430. https://doi.org/10.1080/07391102.2020.1734485
  • Dwivedi, V. D., Tripathi, I. P., Tripathi, R. C., Bharadwaj, S., & Mishra, S. K. (2017). Genomics, proteomics and evolution of dengue virus. Briefings in Functional Genomics, 16(4), 217–227. https://doi.org/10.1093/bfgp/elw040
  • Dwivedi, V., Tripathi, I., Tripathi, R., Singh, R., Yadava, U., & Mishra, S. (2018). In silico docking of quercetin-3-O-β-D-glucoside from Azadirachta Indica with NS2B-NS3 protease in dengue virus. Online Journal of Bioinformatics, 19, 175–180.
  • Goswami, D. (2021). Comparative assessment of RNA-dependent RNA polymerase (RdRp) inhibitors under clinical trials to control SARS-CoV2 using rigorous computational workflow. RSC Advances, 11(46), 29015–29028. https://doi.org/10.1039/D1RA04460E
  • Kamle, M., Mahato, D. K., Lee, K. E., Bajpai, V. K., Gajurel, P. R., Gu, K. S., & Kumar, P. (2019). Ethnopharmacological properties and medicinal uses of Litsea Cubeba. Plants, 8(6), 150. https://doi.org/10.3390/plants8060150
  • Kaptein, S. J. F., Goethals, O., Kiemel, D., Marchand, A., Kesteleyn, B., Bonfanti, J.-F., Bardiot, D., Stoops, B., Jonckers, T. H. M., Dallmeier, K., GeLuykens, P., Thys, K., Crabbe, M., Chatel-Chaix, L., Münster, M., Querat, G., Touret, F., de Lamballerie, X., Raboisson, P., … Neyts, J. (2021). A pan-serotype dengue virus inhibitor targeting the NS3–NS4B interaction. Nature, 598(7881), 504–509. https://doi.org/10.1038/s41586-021-03990-6
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 Update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kumar, S., Bajrai, L. H., Faizo, A. A., Khateb, A. M., Alkhaldy, A. A., Rana, R., Azhar, E. I., & Dwivedi, V. D. (2022). Pharmacophore-model-based drug repurposing for the identification of the potential inhibitors targeting the allosteric site in dengue virus NS5 RNA-dependent RNA polymerase. Viruses, 14(8), 1827. https://doi.org/10.3390/v14081827
  • Lim, S. P., Noble, C. G., Seh, C. C., Soh, T. S., El Sahili, A., Chan, G. K. Y., Lescar, J., Arora, R., Benson, T., Nilar, S., Manjunatha, U., Wan, K. F., Dong, H., Xie, X., Shi, P.-Y., & Yokokawa, F. (2016). Potent allosteric dengue virus NS5 polymerase inhibitors: Mechanism of action and resistance profiling. PLoS Pathogens, 12(8), e1005737. https://doi.org/10.1371/journal.ppat.1005737
  • Maddipati, V. C., Mittal, L., Mantipally, M., Asthana, S., Bhattacharyya, S., & Gundla, R. (2020). A review on the progress and prospects of dengue drug discovery targeting NS5 RNA-dependent RNA polymerase. Current Pharmaceutical Design, 26(35), 4386–4409. https://doi.org/10.2174/1381612826666200523174753
  • Obi, J. O., Gutiérrez-Barbosa, H., Chua, J. V., & Deredge, D. J. (2021). Current trends and limitations in dengue antiviral research. Tropical Medicine and Infectious Disease, 6(4), 1–19. https://doi.org/10.3390/tropicalmed6040180
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & FeRRin, T. E. (2004). UCSF Chimera? A Visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Qiu, Y., Yu, Y., Lan, P., Wang, Y., & Li, Y. (2021). An overview on total valorization of Litsea Cubeba as a new woody oil plant resource toward a zero-waste biorefinery. Molecules, 26(13), 3948. https://doi.org/10.3390/molecules26133948
  • San Martín, J. L., Brathwaite Dick, O., del Diego, J., Montoya, R. H., Dayan, G. H., & Zambrano, B. (2012). The History of dengue outbreaks in the Americas. The American Journal of Tropical Medicine and Hygiene, 87(4), 584–593. https://doi.org/10.4269/ajtmh.2012.11-0770
  • Schrödinger, LLC. (2020a). Schrödinger Release 2020-4; Maestro. Schrödinger, LLC.
  • Schrödinger, LLC. (2020b). Schrödinger Release 2020-4: Desmond Molecular Dynamics System; Maestro-Desmond Interoperability Tools. D.E. Shaw Research. Schrödinger: New York, NY, USA
  • Schrödinger, LLC. (2021). Schrödinger Release 2021-3: Prime. Schrödinger, LLC. NY.
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Suppiah, J., Ching, S.-M., Amin-Nordin, S., Mat-Nor, L.-A., Ahmad-Najimudin, N.-A., Low, G. K.-K., Abdul-Wahid, M.-Z., Thayan, R., & Chee, H.-Y. (2018). Clinical manifestations of dengue in relation to dengue serotype and genotype in Malaysia: A retrospective observational study. PLoS Neglected Tropical Diseases, 12(9), e0006817. https://doi.org/10.1371/journal.pntd.0006817
  • Tian, W., Chen, C., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins and beyond. Biophysical Journal, 114(3), 50a. https://doi.org/10.1016/j.bpj.2017.11.325
  • Tian, N., Zheng, J.-X., Guo, Z.-Y., Li, L.-H., Xia, S., Lv, S., & Zhou, X.-N. (2022). Dengue incidence trends and its burden in major endemic regions from 1990 to 2019. Tropical Medicine and Infectious Disease, 7(8), 180. https://doi.org/10.3390/tropicalmed7080180
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Verma, P., Banerjee, S., Baskey, U., Dutta, S., Bakshi, S., Das, R., Samanta, S., Dutta, S., & SADhukhan, P. C. (2022). Clinicopathological alteration of symptoms with serotype among dengue infected pediatric patients. Journal of Medical Virology, 94(9), 4348–4358. https://doi.org/10.1002/jmv.27862
  • Waickman, A. T., Newell, K., Endy, T. P., & Thomas, S. J. (2023). Biologics for dengue prevention: Up-to-date. Expert Opinion on Biological Therapy, 23(1), 73–87. https://doi.org/10.1080/14712598.2022.2151837
  • Wang, X., Li, T., Shu, Y., Zhang, J., Shan, X., Li, D., Ma, D., Long, S., Pan, Y., Chen, J., Liu, P., & Sun, Q. (2022). Clinical characteristics and risk factors for severe dengue fever in Xishuangbanna, during the dengue outbreak in 2019. Frontiers in Microbiology, 13, 739970. https://doi.org/10.3389/fmicb.2022.739970
  • Zhao, Y., Soh, T. S., Zheng, J., Chan, K. W. K., Phoo, W. W., Lee, C. C., Tay, M. Y. F., Swaminathan, K., Cornvik, T. C., Lim, S. P., Shi, P.-Y., Lescar, J., Vasudevan, S. G., & Luo, D. (2015). A crystal structure of the dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathogens, 11(3), e1004682. https://doi.org/10.1371/journal.ppat.1004682

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.