123
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Temperature effect in the inhibition of PLA2 activity of Bothrops brazili venom by Rosmarinic and Chlorogenic acids, experimental and computational approaches

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 5238-5252 | Received 28 Mar 2023, Accepted 09 Jun 2023, Published online: 28 Jun 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adrião, A. A. X., dos Santos, A. O., de Lima, E. J. S. P., Maciel, J. B., Paz, W. H. P., da Silva, F. M. A., Pucca, M. B., Moura-da-Silva, A. M., Monteiro, W. M., Sartim, M. A., & Koolen, H. H. F. (2022). Plant-derived toxin inhibitors as potential candidates to complement antivenom treatment in snakebite envenomations. Frontiers in Immunology, 13(May), 842576. https://doi.org/10.3389/fimmu.2022.842576
  • Aiswarya, N., Remya, C., Remashree, A. B., Sadasivan, C., & Dileep, K. V. (2022). Binding of rosmarinic acid curcumin and capsaicin with PLA2: A comparative study. Biochemical and Biophysical Research Communications, 626, 187–191. https://doi.org/10.1016/j.bbrc.2022.08.028
  • Arni, R. K., & Ward, R. J. (1996). Phospholipase A2—A structural review. Toxicon: Official Journal of the International Society on Toxinology, 34(8), 827–841. https://doi.org/10.1016/0041-0101(96)00036-0
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-09654-8
  • Borges, R. J., Lemke, N., & Fontes, M. R. M. (2017). PLA2-like proteins myotoxic mechanism: A dynamic model description. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-15614-z
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cardoso, F. F., Gomes, A. A. S., Dreyer, T. R., Cavalcante, W. L. G., Dal Pai, M., Gallacci, M., & Fontes, M. R. M. (2020). Neutralization of a bothropic PLA2-like protein by caftaric acid, a novel potent inhibitor of ophidian myotoxicity. Biochimie, 170, 163–172. https://doi.org/10.1016/j.biochi.2020.01.010
  • Chandrasekaran, R., Bhattacharjee, A., & Devadasan, V. (2019). Anti-inflammatory and Antidote Drug Discovery with Secreted Phospholipase A2 BT - Biocatalysis: Enzymatic Basics and Applications (Q. Husain & M. F. Ullah (eds.), pp. 193–211). Springer International Publishing. https://doi.org/10.1007/978-3-030-25023-2_10
  • Chaves, L. F., Chuang, T. W., Sasa, M., & Gutiérrez, J. M. (2015). Snakebites are associated with poverty, weather fluctuations, and El Niño. Science Advances, 1(8), e1500249. https://doi.org/10.1126/sciadv.1500249
  • Chinnasamy, S., Selvaraj, G., Selvaraj, C., Kaushik, A. C., Kaliamurthi, S., Khan, A., Singh, S. K., & Wei, D. Q. (2020). Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). International Journal of Biological Macromolecules, 144, 53–66. https://doi.org/10.1016/j.ijbiomac.2019.12.091
  • Chippaux, J. P. (2011). Estimate of the burden of snakebites in sub-Saharan Africa: A meta-analytic approach. Toxicon, 57(4), 586–599. https://doi.org/10.1016/j.toxicon.2010.12.022
  • Chippaux, J. P. (2017). Snakebite envenomation turns again into a neglected tropical disease! Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(1), 38-40. https://doi.org/10.1186/s40409-017-0127-6
  • Cristino, J. S., Salazar, G. M., Machado, V. A., Honorato, E., Farias, A. S., Vissoci, J. R. N., Neto, A. V. S., Lacerda, M., Wen, F. H., Monteiro, W. M., & Sachett, J. A. G. (2021). A painful journey to antivenom: The therapeutic itinerary of snakebite patients in the Brazilian Amazon (The QUALISnake Study). PLoS Neglected Tropical Diseases, 15(3), e0009245. https://doi.org/10.1371/journal.pntd.0009245
  • Dennis, E. A., Cao, J., Hsu, Y. H., Magrioti, V., & Kokotos, G. (2011). Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical Reviews, 111(10), 6130–6185. https://doi.org/10.1021/cr200085w
  • Devi, A., Namsa, N. D., & Doley, R. (2020). In silico and in vitro neutralization of PLA2 activity of Daboxin P by butein, mimosine and bakuchiol. International Journal of Biological Macromolecules, 165(Pt A), 1066–1078. https://doi.org/10.1016/j.ijbiomac.2020.09.223
  • Dileep, K. V., Tintu, I., & Sadasivan, C. (2011). Molecular docking studies of curcumin analogs with phospholipase A2. Interdisciplinary Sciences, Computational Life Sciences, 3(3), 189–197. https://doi.org/10.1007/s12539-011-0090-9
  • Dos Santos, J. I., Cintra-Francischinelli, M., Borges, R. J., Fernandes, C. A. H., Pizzo, P., Cintra, A. C. O., Braz, A. S. K., Soares, A. M., & Fontes, M. R. M. (2011). Structural, functional, and bioinformatics studies reveal a new snake venom homologue phospholipase A 2 class. Proteins, 79(1), 61–78. https://doi.org/10.1002/prot.22858
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Fan, H. W., & Monteiro, W. M. (2018). History and perspectives on how to ensure antivenom accessibility in the most remote areas in Brazil. Toxicon : official Journal of the International Society on Toxinology, 151, 15–23. https://doi.org/10.1016/j.toxicon.2018.06.070
  • Fernandes, C. A. H., Borges, R. J., Lomonte, B., & Fontes, M. R. M. (2014). A structure-based proposal for a comprehensive myotoxic mechanism of phospholipase A2-like proteins from viperid snake venoms. Biochimica Et Biophysica Acta, 1844(12), 2265–2276. https://doi.org/10.1016/j.bbapap.2014.09.015
  • Ferreira, S. d S., Silva, D. P. d., Torres-Rêgo, M., Silva-Júnior, A. A. d., & Fernandes-Pedrosa, M. d F. (2022). The potential of phenolic acids in therapy against snakebites: A review. Toxicon: official Journal of the International Society on Toxinology, 208(December 2021), 1–12. https://doi.org/10.1016/j.toxicon.2021.12.019
  • Gomes, A. A. S., Cardoso, F. F., Souza, M. F., Oliveira, C. L. P., Perahia, D., Magro, A. J., & Fontes, M. R. M. (2020). The allosteric activation mechanism of a phospholipase A2-like toxin from Bothrops jararacussu venom: A dynamic description. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-73134-9
  • Gomes Heleno, M. A., Baldasso, P. A., Ponce-Soto, L. A., & Marangoni, S. (2013). Biochemical characterization and pharmacological properties of new basic PLABrTX-I isolated from Bothrops roedingeri (Roedinger’s Lancehead) mertens, 1942, snake venom. BioMed Research International, 2013, 591470. https://doi.org/10.1155/2013/591470
  • Gómez-Betancur, I., Gogineni, V., Salazar-Ospina, A., & León, F. (2019). Perspective on the therapeutics of anti-snake venom. Molecules, 24(18), 3276. https://doi.org/10.3390/molecules24183276
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server), W368–W371. https://doi.org/10.1093/nar/gki464
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Gutiérrez, J. M., Albulescu, L. O., Clare, R. H., Casewell, N. R., Abd El-Aziz, T. M., Escalante, T., & Rucavado, A. (2021). The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming. Toxins, 13(7), 451. https://doi.org/10.3390/toxins13070451
  • Gutiérrez, J. M., Calvete, J. J., Habib, A. G., Harrison, R. A., Williams, D. J., & Warrell, D. A. (2017). Snakebite envenoming. Nature Reviews. Disease Primers, 3(1), 17063-17084. https://doi.org/10.1038/nrdp.2017.63
  • Gutiérrez, J. M., León, G., & Lomonte, B. (2003). Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clinical Pharmacokinetics, 42(8), 721–741. https://doi.org/10.2165/00003088-200342080-00002
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Huancahuire-Vega, S., Ponce-Soto, L. A., Martins-de-Souza, D., & Marangoni, S. (2009). Structural and functional characterization of brazilitoxins II and III (BbTX-II and -III), two myotoxins from the venom of Bothrops brazili snake. Toxicon : official Journal of the International Society on Toxinology, 54(6), 818–827. https://doi.org/10.1016/j.toxicon.2009.06.008
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Kasturiratne, A., Wickremasinghe, A. R., De Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & De Silva, H. J. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), e218. https://doi.org/10.1371/journal.pmed.0050218
  • Knudsen, C., & Laustsen, A. H. (2018). Recent advances in next generation snakebite antivenoms. Tropical Medicine and Infectious Disease, 3(2), 42. https://doi.org/10.3390/tropicalmed3020042
  • Kortemme, T., Kim, D. E., & Baker, D. (2004). Computational alanine scanning of protein-protein interfaces. Science’s STKE, 2004(219), pl2. https://doi.org/10.1126/stke.2192004pl2
  • Kumar, M. S., Amjesh, R., Bhaskaran, S., Delphin, R. D., Nair, A. S., & Sudhakaran, P. R. (2019). Molecular docking and dynamic studies of crepiside E beta glucopyranoside as an inhibitor of snake venom PLA2. Journal of Molecular Modeling, 25(4), 88-99. https://doi.org/10.1007/s00894-019-3954-2
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g _ mmpbsa – A GROMACS tool for MM-PBSA and its optimization for high-throughput binding energy calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laustsen, A. H., Lohse, B., Lomonte, B., Engmark, M., & Gutiérrez, J. M. (2015). Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon: Official Journal of the International Society on Toxinology, 104, 43–45. https://doi.org/10.1016/j.toxicon.2015.07.334
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Liu, Y., Staerk, D., Nielsen, M. N., Nyberg, N., & Jäger, A. K. (2015). High-resolution hyaluronidase inhibition profiling combined with HPLC–HRMS–SPE–NMR for identification of anti-necrosis constituents in Chinese plants used to treat snakebite. Phytochemistry, 119, 62–69. https://doi.org/10.1016/j.phytochem.2015.09.005
  • Mahmud, S., Parves, M. R., Riza, Y. M., Sujon, K. M., Ray, S., Tithi, F. A., Zaoti, Z. F., Alam, S., & Absar, N. (2020). Exploring the potent inhibitors and binding modes of phospholipase A2 through in silico investigation. Journal of Biomolecular Structure & Dynamics, 38(14), 4221–4231. https://doi.org/10.1080/07391102.2019.1680440
  • Marinetti, G. V. (1965). The action of phospholipase A on lipoproteins. Biochimica Et Biophysica Acta, 98(3), 554–565. https://doi.org/10.1016/0005-2760(65)90152-9
  • Meza, J. C. (2010). Steepest descent. WIREs Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Montecucco, C., Gutiérrez, J. M., & Lomonte, B. (2008). Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cellular and Molecular Life Sciences, 65(18), 2897–2912. https://doi.org/10.1007/s00018-008-8113-3
  • Muthusamy, K., Chinnasamy, S., Nagarajan, S., & Sivaraman, T. (2018). Computational and in vitro insights on snake venom phospholipase A(2) inhibitor of phytocompound ikshusterol3-O-glucoside of Clematis gouriana Roxb. ex DC. Journal of Biomolecular Structure & Dynamics, 36(16), 4197–4208. https://doi.org/10.1080/07391102.2017.1409653
  • Oleg, T., & Arthur, J. O. (2010). AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc
  • Oliveira, A., Bleicher, L., Schrago, C. G., & Silva Junior, F. P. (2018). Conservation analysis and decomposition of residue correlation networks in the phospholipase A2 superfamily (PLA2s): Insights into the structure-function relationships of snake venom toxins. Toxicon : official Journal of the International Society on Toxinology, 146, 50–60. https://doi.org/10.1016/j.toxicon.2018.03.013
  • Renetseder, R., Brunie, S., Dijkstra, B. W., Drenth, J., & Sigler, P. B. (1985). A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. The Journal of Biological Chemistry, 260(21), 11627–11634. https://doi.org/10.1016/S0021-9258(17)39077-4
  • Rodrigues, C. R., Molina, D. A. M., Silva de Assis, T. C., Liberato, C., Melo-Braga, M. N., Ferreyra, C. B., Cárdenas, J., Costal-Oliveira, F., Guerra-Duarte, C., & Chávez-Olórtegui, C. (2020). Proteomic and toxinological characterization of Peruvian pitviper Bothrops brazili (“jergón shushupe”), venom. Toxicon : official Journal of the International Society on Toxinology, 184(February), 19–27. https://doi.org/10.1016/j.toxicon.2020.05.016
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Salvador, G. H. M., Cardoso, F. F., Gomes, A. A., Cavalcante, W. L. G., Gallacci, M., & Fontes, M. R. M. (2019). Search for efficient inhibitors of myotoxic activity induced by ophidian phospholipase A 2 -like proteins using functional, structural and bioinformatics approaches. Scientific Reports, 9(1), 510-523. https://doi.org/10.1038/s41598-018-36839-6
  • Salvador, G. H. M., Gomes, A. A. S., Bryan-Quirós, W., Fernández, J., Lewin, M. R., Gutiérrez, J. M., Lomonte, B., & Fontes, M. R. M. (2019). Structural basis for phospholipase A2-like toxin inhibition by the synthetic compound Varespladib (LY315920). Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-53755-5
  • Salvador, G. H. M., Pinto, Ê. K. R., Ortolani, P. L., Fortes-Dias, C. L., Cavalcante, W. L. G., Soares, A. M., Lomonte, B., Lewin, M. R., & Fontes, M. R. M. (2023). Structural basis of the myotoxic inhibition of the Bothrops pirajai PrTX-I by the synthetic varespladib. Biochimie, 207, 1–10. https://doi.org/10.1016/j.biochi.2022.11.006
  • Sanz, L., Pérez, A., Quesada-Bernat, S., Diniz-Sousa, R., Calderón, L. A., Soares, A. M., Calvete, J. J., & Caldeira, C. A. S. (2020). Venomics and antivenomics of the poorly studied Brazil’s lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of Pará. Journal of Venomous Animals and Toxins Including Tropical Diseases, 26(February), 1–14. https://doi.org/10.1590/1678-9199-jvatitd-2019-0103
  • Schaloske, R. H., & Dennis, E. A. (2006). The phospholipase A2 superfamily and its group numbering system. Biochimica et Biophysica Acta, 1761(11), 1246–1259. https://doi.org/10.1016/j.bbalip.2006.07.011
  • Sharifpour, S., Fakhraee, S., & Behjatmanesh-Ardakani, R. (2020). Insights into the mechanism of inhibition of phospholipase A2 by resveratrol: An extensive molecular dynamics simulation and binding free energy calculation. Journal of Molecular Graphics & Modelling, 100, 107649. https://doi.org/10.1016/j.jmgm.2020.107649
  • Silva, D. P. d., Ferreira, S. d S., Torres-Rêgo, M., Furtado, A. A., Yamashita, F. d O., Diniz, E. A. d S., Vieira, D. S., Ururahy, M. A. G., Silva-Júnior, A. A. d., Luna, K. P. d O., & Fernandes-Pedrosa, M. d F. (2022). Antiophidic potential of chlorogenic acid and rosmarinic acid against Bothrops leucurus snake venom. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 148, 112766. https://doi.org/10.1016/j.biopha.2022.112766
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367
  • Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo—Distance constraints applied on model quality estimation. Bioinformatics (Oxford, England), 36(6), 1765–1771. https://doi.org/10.1093/bioinformatics/btz828
  • Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3 - A versatile homology modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/journal.pcbi.1008667
  • Sucasaca-Monzón, G., Randazzo-Moura, P., Rocha, T., Torres-Huaco, F. D., Vilca-Quispe, A., Ponce-Soto, L. A., Marangoni, S., Da Cruz-Höfling, M. A., & Rodrigues-Simioni, L. (2015). Bp-13 PLA2: Purification and neuromuscular activity of a new Asp49 toxin isolated from bothrops pauloensis snake venom. Biochemistry Research International, 2015, 826059. https://doi.org/10.1155/2015/826059
  • Tap, F. M., Abd Majid, F. A., Ismail, H. F., Wong, T. S., Shameli, K., Miyake, M., & Khairudin, N. B. A. (2018). In silico and in vitro study of the bromelain-phytochemical complex inhibition of phospholipase A2 (Pla2). Molecules, 23(1), 73. https://doi.org/10.3390/molecules23010073
  • Tasoulis, T., & Isbister, G. K. (2017). A review and database of snake venom proteomes. In Toxins, 9(9), 290. https://doi.org/10.3390/toxins9090290
  • Träg, J., & Zahn, D. (2019). Improved GAFF2 parameters for fluorinated alkanes and mixed hydro- and fluorocarbons. Journal of Molecular Modeling, 25(2), 39-48. https://doi.org/10.1007/s00894-018-3911-5
  • Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, 2.
  • Van Gunsteren, W. F., & Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Vassetti, D., Pagliai, M., & Procacci, P. (2019). Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. Journal of Chemical Theory and Computation, 15(3), 1983–1995. https://doi.org/10.1021/acs.jctc.8b01039
  • Waskom, M. L. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Willard, L., Ranjan, A., Zhang, H., Zhang, H., Monzavi, H., Monzavi, H., Boyko, R. F., Boyko, R. F., Sykes, B. D., Sykes, B. D., Wishart, D. S., & Ds, W. (n.d). FAU FAU FAU FAU FAU VADAR: A web server for quantitative evaluation of protein structure quality. PG - 3316-9 (Issues 1362-4962 (Electronic)).
  • World Health Assembly, 71. (n.d). Addressing the burden of snakebite envenoming. World Health Organization. https://apps.who.int/iris/handle/10665/279476
  • WHO. (n.d). Snakebite envenoming: A strategy for prevention and control: Executive summary. World Health Organization. https://apps.who.int/iris/handle/10665/312195
  • Xiao, H., Pan, H., Liao, K., Yang, M., & Huang, C. (2017). Snake venom PLA2, a promising target for broad-spectrum antivenom drug development. BioMed Research International, 2017, 6592820. https://doi.org/10.1155/2017/6592820
  • Yuan, S., Chan, H. C. S., & Hu, Z. (2017). Using PyMOL as a platform for computational drug design. WIREs Computational Molecular Science, 7(2), e1298. https://doi.org/10.1002/wcms.1298

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.