144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development, validation and analysis of a human profurin 3D model using comparative modeling and molecular dynamics simulations

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5428-5446 | Received 19 Feb 2023, Accepted 11 Jun 2023, Published online: 14 Jul 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Berendsen, H. J., Postma, J. P., & van Gunsteren, W. F. (1981). Interaction models for water in relation to protein hydration. In: Intermolecular forces (pp. 331–342). Springer.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the additive charmm all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Bhattacharjya, S., Xu, P., Wang, P., Osborne, M. J., & Ni, F. (2007). Conformational analyses of a partially-folded bioactive prodomain of human furin. Biopolymers: Original Research on Biomolecules, 86(4), 329–344. https://doi.org/10.1002/bip.20748
  • Braun, E., & Sauter, D. (2019). Furin-mediated protein processing in infectious diseases and cancer. Clinical & Translational Immunology, 8(8), e1073. https://doi.org/10.1002/cti2.1073
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Case, D. A. (2022). Amber 2022. https://ambermd.org/doc12/Amber22.pdf#page=33
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). Molprobity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Cino, E. A., Choy, W. Y., & Karttunen, M. (2012). Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations. Journal of Chemical Theory and Computation, 8(8), 2725–2740. https://doi.org/10.1021/ct300323g
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • da Silva, T. U., Pougy, K. D. C., Albuquerque, M. G., Lima, C. H. D. S., & Machado, S. D. P. (2023). Molecular dynamics simulations of aqueous systems of inhibitor candidates for adenosine-5’-phosphosufate reductase. Journal of Biomolecular Structure and Dynamics, 41(6), 2466–2477. https://doi.org/10.1080/07391102.2022.2033137
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh ewald: An n log (n) method for ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: a method for determining the essential dynamics of proteins. In Protein dynamics (pp. 193–226). Springer.
  • de Souza, A. S., Pacheco, B. D. C., Pinheiro, S., Muri, E. M. F., Dias, L. R. S., Lima, C. H. S., Garrett, R., de Moraes, M. B. M., de Souza, B. E. G., & Puzer, L. (2019). 3-acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorganic & Medicinal Chemistry Letters, 29(9), 1094–1098. https://doi.org/10.1016/j.bmcl.2019.02.031
  • Dillon, S. L., Williamson, D. M., Elferich, J., Radler, D., Joshi, R., Thomas, G., & Shinde, U. (2012). Propeptides are sufficient to regulate organelle-specific pH-dependent activation of furin and proprotein convertase 1/3. Journal of Molecular Biology, 423(1), 47–62. https://doi.org/10.1016/j.jmb.2012.06.023
  • Dong, G. Q., Fan, H., Schneidman-Duhovny, D., Webb, B., & Sali, A. (2013). Optimized atomic statistical potentials: Assessment of protein interfaces and loops. Bioinformatics (Oxford, England), 29(24), 3158–3166. https://doi.org/10.1093/bioinformatics/btt560
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Feliciangeli, S. F., Thomas, L., Scott, G. K., Subbian, E., Hung, C.-H., Molloy, S. S., Jean, F., Shinde, U., & Thomas, G. (2006). Identification of a pH sensor in the furin propeptide that regulates enzyme activation. The Journal of Biological Chemistry, 281(23), 16108–16116. https://doi.org/10.1074/jbc.M600760200
  • Ferrari, B. (2023). Automated-lysozyme-water-forcefields-GROMACS. https://github.com/brendaferrari/automated-lysozyme-water-forcefields-GROMACS.
  • Ferrari, B. (2023). HbondAuto. https://github.com/brendaferrari/HBondAuto.
  • Ferrari, B. (2023). InfleCS-analysis. https://github.com/brendaferrari/InfleCS-analysis.
  • Ferrari, B. (2023). PCAauto. https://github.com/brendaferrari/PCAauto.
  • Ferrari, B. (2023). PORCUPINEplot. https://github.com/brendaferrari/PORCUPINEplot.
  • Fiser, A. (2010). Template-based protein structure modeling. Computational Biology, 443, 73–94.
  • Foundation PS. (2016). Python language reference. Versão 3.6. https://www.python.org/downloads/release/python-3613/
  • Foundation PS. (2022). Python language reference. Versão 3.8. https://www.python.org/downloads/release/python-3813/
  • Fugère, M., Limperis, P. C., Beaulieu-Audy, V., Gagnon, F., Lavigne, P., Klarskov, K., Leduc, R., & Day, R. (2002). Inhibitory potency and specificity of subtilase-like pro-protein convertase (SPC) prodomains. The Journal of Biological Chemistry, 277(10), 7648–7656. https://doi.org/10.1074/jbc.M107467200
  • Gawlik, K., Shiryaev, S. A., Zhu, W., Motamedchaboki, K., Desjardins, R., Day, R., Remacle, A. G., Stec, B., & Strongin, A. Y. (2009). Autocatalytic activation of the furin zymogen requires removal of the emerging enzyme’s n-terminus from the active site. PLoS One. 4(4), e5031. https://doi.org/10.1371/journal.pone.0005031
  • Gowers, R. J., Linke, M., & Barnoud, J. (2016). Mdanalysis: A python package for the rapid analysis of molecular dynamics simulations. Proceedings of the 15th Python in Science Conference, 98,105. https://doi.org/10.25080/Majora-629e541a-00e
  • Guvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Molecular Modeling of Proteins, 673, 63–88. [Database][Mismatch
  • Hameduh, T., Haddad, Y., Adam, V., & Heger, Z. (2020). Homology modeling in the time of collective and artificial intelligence. Computational and Structural Biotechnology Journal, 18, 3494–3506. https://doi.org/10.1016/j.csbj.2020.11.007
  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P. … Oliphant, T. E. (2020). Array programming with numpy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). Lincs: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Huang, J., & MacKerell, A. D. (2013). Charmm36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Izaguirre, G. (2019). The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses, 11(9), 837. https://doi.org/10.3390/v11090837
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kadaoluwa Pathirannahalage, S. P., Meftahi, N., Elbourne, A., Weiss, A. C. G., McConville, C. F., Padua, A., Winkler, D. A., Costa Gomes, M., Greaves, T. L., Le, T. C., Besford, Q. A., & Christofferson, A. J. (2021). Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. Journal of Chemical Information and Modeling, 61(9), 4521–4536. https://doi.org/10.1021/acs.jcim.1c00794
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Procheck: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lei, X., Basu, D., Li, Z., Zhang, M., Rudic, R. D., Jiang, X.-C., & Jin, W. (2014). Hepatic overexpression of the prodomain of furin lessens progression of atherosclerosis and reduces vascular remodeling in response to injury. Atherosclerosis, 236(1), 121–130. https://doi.org/10.1016/j.atherosclerosis.2014.06.015
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lopes, P. E., Guvench, O., & MacKerell, A. D. (2015). Current status of protein force fields for molecular dynamics simulations. In Molecular modeling of proteins (pp. 47–71). Springer.
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Mackerell, A. D., Jr Feig, M., & Brooks, III. C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415. https://doi.org/10.1002/jcc.20065
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Melo, F., & Sali, A. (2007). Fold assessment for comparative protein structure modeling. Protein Science: A Publication of the Protein Society, 16(11), 2412–2426. https://doi.org/10.1110/ps.072895107
  • Messaoudi, A., Belguith, H., & Ben Hamida, J. (2013). Homology modeling and virtual screening approaches to identify potent inhibitors of veb-1 β-lactamase. Theoretical Biology and Medical Modelling, 10(1), 1–10. https://doi.org/10.1186/1742-4682-10-22
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). Mdanalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
  • Mu Y, Kosov DS, Stock G. (2003). Conformational dynamics of trialanine in water. 2. Comparison of amber, charmm, gromos, and OPLs force fields to NMR and infrared experiments. The Journal of Physical Chemistry B, 107(21), 5064–5073. https://doi.org/10.1021/jp022445a
  • Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443–453. https://doi.org/10.1016/0022-2836(70)90057-4
  • Nowroozi, A., & Shahlaei, M. (2017). A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of gpcr structures: A case study on human bombesin receptor subtype-3. Journal of Biomolecular Structure & Dynamics, 35(2), 250–272. https://doi.org/10.1080/07391102.2016.1140593
  • Páll, S., & Hess, B. (2013). A flexible algorithm for calculating pair interactions on simd architectures. Computer Physics Communications, 184(12), 2641–2650. https://doi.org/10.1016/j.cpc.2013.06.003
  • Pandas Development Team T. (2020). pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.3509134
  • Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Satyanarayana, S. D. V., Krishna, M. S. R., Pavan Kumar, P., & Jeereddy, S. (2018). In silico structural homology modeling of NIF a protein of rhizobial strains in selective legume plants. Journal, Genetic Engineering & Biotechnology, 16(2), 731–737. https://doi.org/10.1016/j.jgeb.2018.06.006
  • Scamuffa, N., Seidah, N., Basak, A., Cavin, F., Khatib, A. M. (2006). Inactivation of furin by its naturally occurring inhibitor pro-furin abolish breast cancer cells malignant phenotypes and tumorigenecity in mice. Cancer Research, 66(8_Supplement), 1235–1236.
  • Schrödinger, L., & DeLano. W. (n.d.). Pymol. http://www.pymol.org/pymol.
  • Seidah, N. G., Sadr, M. S., Chrétien, M., & Mbikay, M. (2013). The multifaceted proprotein convertases: Their unique, redundant, complementary, and opposite functions. The Journal of Biological Chemistry, 288(30), 21473–21481. https://doi.org/10.1074/jbc.R113.481549
  • Shen, M.-Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science: A Publication of the Protein Society, 15(11), 2507–2524. https://doi.org/10.1110/ps.062416606
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75
  • Sinha, S., Harioudh, M. K., Dewangan, R. P., Ng, W. J., Ghosh, J. K., & Bhattacharjya, S. (2018). Cell-selective pore forming antimicrobial peptides of the prodomain of human furin: A conserved aromatic/cationic sequence mapping, membrane disruption, and atomic-resolution structure and dynamics. ACS Omega. 3(11), 14650–14664. https://doi.org/10.1021/acsomega.8b01876
  • Tangrea, M. A., Bryan, P. N., Sari, N., & Orban, J. (2002). Solution structure of the pro-hormone convertase 1 pro-domain from mus musculus. Journal of Molecular Biology, 320(4), 801–812. https://doi.org/10.1016/s0022-2836(02)00543-0
  • The GIMP Development Team. (n.d.). Gimp. https://www.gimp.org.
  • Thomas, G. (2002). Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nature Reviews. Molecular Cell Biology, 3(10), 753–766. https://doi.org/10.1038/nrm934
  • Uniprot: The universal protein knowledgebase. (2021). Nucleic Acids Research, 49(D1), D480–D489.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). Gromacs: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using modeller. Current Protocols in Bioinformatics, 54(1), 5–6. https://doi.org/10.1002/cpbi.3
  • Westerlund, A. M., & Delemotte, L. (2019). Inflecs: Clustering free energy landscapes with Gaussian mixtures. Journal of Chemical Theory and Computation, 15(12), 6752–6759. https://doi.org/10.1021/acs.jctc.9b00454
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). Molprobity: More and better reference data for improved all-atom structure validation. Protein Science: A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Williamson, D. M., Elferich, J., Ramakrishnan, P., Thomas, G., & Shinde, U. (2013). The mechanism by which a propeptide-encoded ph sensor regulates spatiotemporal activation of furin. The Journal of Biological Chemistry, 288(26), 19154–19165. https://doi.org/10.1074/jbc.M112.442681
  • Winter, A. (2017). QtGrace. Version 0.2.6. https://sourceforge.net/projects/qtgrace/
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in china. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.