162
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational screening of pathogenic missense nsSNPs in heme oxygenase 1 (HMOX1) gene and their structural and functional consequences

, ORCID Icon, , , , , & show all
Pages 5072-5091 | Received 03 Mar 2023, Accepted 07 Jun 2023, Published online: 11 Jul 2023

References

  • Abraham, N. G., & Kappas, A. (2008). Pharmacological and clinical aspects of heme oxygenase. Pharmacological Reviews, 60(1), 79–127. https://doi.org/10.1124/pr.107.07104
  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 34984. https://doi.org/10.1038/srep34984
  • Araujo, J. A., Zhang, M., & Yin, F. (2012). Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Frontiers in Pharmacology, 3, 119. https://doi.org/10.3389/fphar.2012.00119
  • Ardito, F., Giuliani, M., Perrone, D., Troiano, G., & Lo Muzio, L. (2017). The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. International Journal of Molecular Medicine, 40(2), 271–280. https://doi.org/10.3892/ijmm.2017.3036
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Ayer, A., Zarjou, A., Agarwal, A., & Stocker, R. (2016). Heme oxygenases in cardiovascular health and disease. Physiological Reviews, 96(4), 1449–1508. https://doi.org/10.1152/physrev.00003.2016
  • Bekeschus, S., Freund, E., Wende, K., Gandhirajan, R. K., & Schmidt, A. (2018). Hmox1 upregulation is a mutual marker in human tumor cells exposed to physical plasma-derived oxidants. Antioxidants, 7(11), 151. https://doi.org/10.3390/antiox7110151
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLOS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Bilska-Wilkosz, A., Górny, M., & Iciek, M. (2022). Biological and pharmacological properties of carbon monoxide: A general overview. Oxygen, 2(2), 130–151. https://doi.org/10.3390/oxygen2020012
  • Bowman, S. E. J., & Bren, K. L. (2008). The chemistry and biochemistry of heme c: Functional bases for covalent attachment. Natural Product Reports, 25(6), 1118–1130. https://doi.org/10.1039/b717196j
  • Callis, J. (2014). The ubiquitination machinery of the ubiquitin system. The Arabidopsis Book, 12(12), e0174. https://doi.org/10.1199/tab.0174
  • Capriotti, E., & Altman, R. B. (2011). A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics, 98(4), 310–317. https://doi.org/10.1016/j.ygeno.2011.06.010
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-S3-S2
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics, 14(Suppl 3), S6. https://doi.org/10.1186/1471-2164-14-S3-S6
  • Capriotti, E., & Fariselli, P. (2017). PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Research, 45(W1), W247–W252. https://doi.org/10.1093/nar/gkx369
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–310. https://doi.org/10.1093/nar/gki375
  • Chau, L.-Y. (2015). Heme oxygenase-1: Emerging target of cancer therapy. Journal of Biomedical Science, 22(1), 22. https://doi.org/10.1186/s12929-015-0128-0
  • Chen, C.-W., Lin, M.-H., Liao, C.-C., Chang, H.-P., & Chu, Y.-W. (2020). iStable 2.0: Predicting protein thermal stability changes by integrating various characteristic modules. Computational and Structural Biotechnology Journal, 18, 622–630. https://doi.org/10.1016/j.csbj.2020.02.021
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics, 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Christensen, D. G., Xie, X., Basisty, N., Byrnes, J., McSweeney, S., Schilling, B., & Wolfe, A. J. (2019). Post-translational protein acetylation: An elegant mechanism for bacteria to dynamically regulate metabolic functions. Frontiers in Microbiology, 10, 1604. https://doi.org/10.3389/fmicb.2019.01604
  • Consoli, V., Sorrenti, V., Grosso, S., & Vanella, L. (2021). Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules, 11(4), 589. https://doi.org/10.3390/biom11040589
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. In D. R. Livesay (Ed.), Protein dynamics: Methods and protocols (pp. 193–226). Humana Press. https://doi.org/10.1007/978-1-62703-658-0_11
  • Deng, W., Wang, C., Zhang, Y., Xu, Y., Zhang, S., Liu, Z., & Xue, Y. (2016). GPS-PAIL: Prediction of lysine acetyltransferase-specific modification sites from protein sequences. Scientific Reports, 6(1), 39787. https://doi.org/10.1038/srep39787
  • Elber, R., Ruymgaart, A. P., & Hess, B. (2011). SHAKE parallelization. The European Physical Journal. Special Topics, 200(1), 211–223. https://doi.org/10.1140/epjst/e2011-01525-9
  • Fariselli, P.,Martelli, P. L., Savojardo, C., & Casadio, R. (2015). INP S: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics, 31(17), 2816–2821. https://doi.org/10.1093/bioinformatics/btv291
  • Funes, S. C., Rios, M., Fernández-Fierro, A., Covián, C., Bueno, S. M., Riedel, C. A., Mackern-Oberti, J. P., & Kalergis, A. M. (2020). Naturally derived heme-oxygenase 1 inducers and their therapeutic application to immune-mediated diseases. Frontiers in Immunology, 11, 1467. https://doi.org/10.3389/fimmu.2020.01467
  • Guharoy, M., & Chakrabarti, P. (2005). Conservation and relative importance of residues across protein-protein interfaces. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15447–15452. https://doi.org/10.1073/pnas.0505425102
  • Habib, I., Khan, S., Mohammad, T., Hussain, A., Alajmi, M. F., Rehman, T., Anjum, F., & Hassan, M. I. (2022). Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. Journal of Biomolecular Structure & Dynamics, 40(19), 9053–9066. https://doi.org/10.1080/07391102.2021.1922313
  • Harrison, P. M., & Arosio, P. (1996). The ferritins: Molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1275(3), 161–203. https://doi.org/10.1016/0005-2728(96)00022-9
  • Havranek, B., & Islam, S. M. (2021). Prediction and evaluation of deleterious and disease causing non-synonymous SNPs (nsSNPs) in human NF2 gene responsible for neurofibromatosis type 2 (NF2). Journal of Biomolecular Structure & Dynamics, 39(18), 7044–7055. https://doi.org/10.1080/07391102.2020.1805018
  • Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional effects for sequence variants. BMC Genomics. 16(S8), S1. https://doi.org/10.1186/1471-2164-16-S8-S1
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Idriss, N. K., Blann, A. D., & Lip, G. Y. H. (2008). Hemoxygenase-1 in cardiovascular disease. Journal of the American College of Cardiology, 52(12), 971–978. https://doi.org/10.1016/j.jacc.2008.06.019
  • Jeney, V., Balla, J., Yachie, A., Varga, Z., Vercellotti, G. M., Eaton, J. W., & Balla, G. (2002). Pro-oxidant and cytotoxic effects of circulating heme. Blood, 100(3), 879–887. https://doi.org/10.1182/blood.v100.3.879
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Khoruddin, N. A., Noorizhab, M. N., Teh, L. K., Mohd Yusof, F. Z., & Salleh, M. Z. (2021). Pathogenic nsSNPs that increase the risks of cancers among the Orang Asli and Malays. Scientific Reports, 11(1), 16158. https://doi.org/10.1038/s41598-021-95618-y
  • Kim, H. P., Wang, X., Galbiati, F., Ryter, S. W., & Choi, A. M. K. (2004). Caveolae compartmentalization of heme oxygenase-1 in endothelial cells. FASEB Journal, 18(10), 1080–1089. https://doi.org/10.1096/fj.03-1391com
  • Kostal, J., & Voutchkova-Kostal, A. (2016). CADRE-SS, an in silico tool for predicting skin sensitization potential based on modeling of molecular interactions. Chemical Research in Toxicology, 29(1), 58–64. https://doi.org/10.1021/acs.chemrestox.5b00392
  • Lad, L., Wang, J., Li, H., Friedman, J., Bhaskar, B., Ortiz de Montellano, P. R., & Poulos, T. L. (2003). Crystal structures of the ferric, ferrous, and ferrous-NO forms of the Asp140Ala mutant of human heme oxygenase-1: Catalytic implications. Journal of Molecular Biology, 330(3), 527–538. https://doi.org/10.1016/s0022-2836(03)00578-3
  • Lánczky, A., & Győrffy, B. (2021). Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. Journal of Medical Internet Research, 23(7), e27633. https://doi.org/10.2196/27633
  • Lightning, L. K., Huang, H., Moenne-Loccoz, P., Loehr, T. M., Schuller, D. J., Poulos, T. L., & de Montellano, P. R. (2001). Disruption of an active site hydrogen bond converts human heme oxygenase-1 into a peroxidase. The Journal of Biological Chemistry, 276(14), 10612–10619. https://doi.org/10.1074/jbc.M010349200
  • Lim, S. W., Tan, K. J., Azuraidi, O. M., Sathiya, M., Lim, E. C., Lai, K. S., Yap, W.-S., & Afizan, N. A. R. N. M. (2021). Functional and structural analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the MYB oncoproteins associated with human cancer. Scientific Reports, 11(1), 1. https://doi.org/10.1038/s41598-021-03624-x
  • Lin, Y.-F., Yang, J., & Rosen, B. P. (2007). ArsD residues Cys12, Cys13, and Cys18 form an As(III)-binding site required for arsenic metallochaperone activity. The Journal of Biological Chemistry, 282(23), 16783–16791. https://doi.org/10.1074/jbc.M700886200
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Liou, G.-Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44(5), 479–496. https://doi.org/10.3109/10715761003667554
  • Lobanov, M. I., Bogatyreva, N. S., & Galzitskaia, O. V. (2008). Radius of gyration is indicator of compactness of protein structure. Molekuliarnaia Biologiia, 42(4), 701–706.
  • Madeira, F., Park, Y. m., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Martins, A. C., Almeida, J. I., Lima, I. S., Kapitão, A. S., & Gozzelino, R. (2017). Iron metabolism and the inflammatory response. IUBMB Life, 69(6), 442–450. https://doi.org/10.1002/iub.1635
  • Mucha, O., Podkalicka, P., Mikulski, M., Barwacz, S., Andrysiak, K., Biela, A., Mieczkowski, M., Kachamakova-Trojanowska, N., Ryszawy, D., Białas, A., Szelążek, B., Grudnik, P., Majewska, E., Michalik, K., Jakubiec, K., Bień, M., Witkowska, N., Gluza, K., Ekonomiuk, D., … Łoboda, A. (2019). Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment. Archives of Biochemistry and Biophysics, 671, 130–142. https://doi.org/10.1016/j.abb.2019.07.002
  • Müller, M. M. (2018). Post-translational modifications of protein backbones: Unique functions, mechanisms, and challenges. Biochemistry, 57(2), 177–185. https://doi.org/10.1021/acs.biochem.7b00861
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server), W239–W242. https://doi.org/10.1093/nar/gkl190
  • Pereira, G. R. C., Vieira, B., de, A. A., & Mesquita, J. F. D. (2021). Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis. PLOS One, 16(2), e0247841. https://doi.org/10.1371/journal.pone.0247841
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(W1), W314–W319. https://doi.org/10.1093/nar/gku411
  • Podkalicka, P., Mucha, O., Józkowicz, A., Dulak, J., & Łoboda, A. (2018). Heme oxygenase inhibition in cancers: Possible tools and targets. Contemporary Oncology, 22(1A), 23–32. https://doi.org/10.5114/wo.2018.73879
  • Qiu, W., Xu, C., Xiao, X., & Xu, D. (2019). Computational prediction of ubiquitination proteins using evolutionary profiles and functional domain annotation. Current Genomics, 20(5), 389–399. https://doi.org/10.2174/1389202919666191014091250
  • Radhakrishnan, N., Yadav, S. P., Sachdeva, A., Pruthi, P. K., Sawhney, S., Piplani, T., Wada, T., & Yachie, A. (2011). Human heme oxygenase-1 deficiency presenting with hemolysis, nephritis, and asplenia. Journal of Pediatric Hematology/Oncology, 33(1), 74–78. https://doi.org/10.1097/MPH.0b013e3181fd2aae
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR-ABL1 protein-A computational insight. Journal of Cellular Biochemistry, 119(1), 918–925. https://doi.org/10.1002/jcb.26257
  • Ramazi, S., & Zahiri, J. (2021). Post-translational modifications in proteins: Resources, tools and prediction methods. Database, 2021, baab012. https://doi.org/10.1093/database/baab012
  • Rivas, J. D. L., & Fontanillo, C. (2010). Protein–protein interactions essentials: Key concepts to building and analyzing interactome networks. PLOS Computational Biology, 6(6), e1000807. https://doi.org/10.1371/journal.pcbi.1000807
  • Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Ryter, S. W., Otterbein, L. E., Morse, D., & Choi, A. M. K. (2002). Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance. Molecular and Cellular Biochemistry, 234–235(1–2), 249–263. https://doi.org/10.1023/A:1015957026924
  • Saxena, S., Achyuth B, S., Murthy, T. P. K., Chandramohan, V., Yadav, A. K., & Singh, T. R. (2021). Structural and functional analysis of disease-associated mutations in GOT1 gene: An in silico study. Computers in Biology and Medicine, 136, 104695. https://doi.org/10.1016/j.compbiomed.2021.104695
  • Saxena, S., Krishna Murthy, T. P., Chandrashekhar, C. R., Patil, L. S., Aditya, A., Shukla, R., Yadav, A. K., Singh, T. R., Samantaray, M., & Ramaswamy, A. (2022a). A bioinformatics approach to the identification of novel deleterious mutations of human TPMT through validated screening and molecular dynamics. Scientific Reports, 12(1), 18872. https://doi.org/10.1038/s41598-022-23488-z
  • Saxena, S., Murthy, T. P. K., Chandramohan, V., Achyuth, S., Maansi, M., Das, P., Sineagha, V., & Prakash, S. (2022b). In-silico analysis of deleterious single nucleotide polymorphisms of PNMT gene. Molecular Simulation, 48(16), 1411–1425. https://doi.org/10.1080/08927022.2022.2094922
  • Sebastián, V. P., Salazar, G. A., Coronado-Arrázola, I., Schultz, B. M., Vallejos, O. P., Berkowitz, L., Álvarez-Lobos, M. M., Riedel, C. A., Kalergis, A. M., & Bueno, S. M. (2018). Heme oxygenase-1 as a modulator of intestinal inflammation development and progression. Frontiers in Immunology, 9, 1956. https://doi.org/10.3389/fimmu.2018.01956
  • Sen Gupta, P. S., Islam, R. N. U., Banerjee, S., Nayek, A., Rana, M. K., & Bandyopadhyay, A. K. (2021). Screening and molecular characterization of lethal mutations of human homogentisate 1, 2 dioxigenase. Journal of Biomolecular Structure & Dynamics, 39(5), 1661–1671. https://doi.org/10.1080/07391102.2020.1736158
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2021). Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. Journal of Biomolecular Structure & Dynamics, 39(17), 6524–6538. https://doi.org/10.1080/07391102.2020.1801507
  • Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Sotomayor-Vivas, C., Hernández-Lemus, E., & Dorantes-Gilardi, R. (2022). Linking protein structural and functional change to mutation using amino acid networks. PLOS One, 17(1), e0261829. https://doi.org/10.1371/journal.pone.0261829
  • Stefl, S., Nishi, H., Petukh, M., Panchenko, A. R., & Alexov, E. (2013). Molecular mechanisms of disease-causing missense mutations. Journal of Molecular Biology, 425(21), 3919–3936. https://doi.org/10.1016/j.jmb.2013.07.014
  • Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235(4792), 1043–1046. https://doi.org/10.1126/science.3029864
  • Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074
  • Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556–W560. https://doi.org/10.1093/nar/gkz430
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548. https://doi.org/10.1186/1471-2105-11-548
  • Wang, C., Xu, H., Lin, S., Deng, W., Zhou, J., Zhang, Y., Shi, Y., Peng, D., & Xue, Y. (2020). GPS 5.0: An update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics, Proteomics & Bioinformatics, 18(1), 72–80. https://doi.org/10.1016/j.gpb.2020.01.001
  • Wu, M.-L., Ho, Y.-C., Lin, C.-Y., & Yet, S.-F. (2011). Heme oxygenase-1 in inflammation and cardiovascular disease. American Journal of Cardiovascular Disease, 1(2), 150–158.
  • Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., & Koizumi, S. (1999). Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. The Journal of Clinical Investigation, 103(1), 129–135. https://doi.org/10.1172/JCI4165
  • Yadav, A. K., & Singh, T. R. (2021a). Novel structural and functional impact of damaging single nucleotide polymorphisms (SNPs) on human SMYD2 protein using computational approaches. Meta Gene, 28, 100871. https://doi.org/10.1016/j.mgene.2021.100871
  • Yadav, A. K., & Singh, T. R. (2021b). Novel inhibitors design through structural investigations and simulation studies for human PKMTs (SMYD2) involved in cancer. Molecular Simulation, 47(14), 1149–1158. https://doi.org/10.1080/08927022.2021.1957882
  • Yang, S., Ouyang, J., Lu, Y., Harypursat, V., & Chen, Y. (2022). A dual role of heme oxygenase-1 in tuberculosis. Frontiers in Immunology, 13, 842858. https://doi.org/10.3389/fimmu.2022.842858
  • Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426(14), 2692–2701. https://doi.org/10.1016/j.jmb.2014.04.026
  • Ye, W., Liu, Z., Liu, F., & Luo, C. (2021). Heme oxygenase-1 predicts risk stratification and immunotherapy efficacy in lower grade gliomas. Frontiers in Cell and Developmental Biology, 9, 760800. https://doi.org/10.3389/fcell.2021.760800
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. The Journal of Chemical Physics, 99(10), 8345–8348. https://doi.org/10.1063/1.465608
  • Zhao, Y., Zeng, C., & Massiah, M. A. (2015). Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PLOS One, 10(4), e0124377. https://doi.org/10.1371/journal.pone.0124377

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.