102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Explore the underlying oral efficacy of α-, β-, γ-Cyclodextrin against the ulcerative colitis using in vitro and in vivo studies assisted by network pharmacology

, , , , &
Pages 4985-5000 | Received 21 Feb 2023, Accepted 05 Jun 2023, Published online: 30 Jul 2023

References

  • Ajayi, A. M., Ben-Azu, B., Balogun, S. O., de Oliveira, R. G., Umukoro, S., de Oliveira, D. T., & Ademowo, O. G. (2022). Induction of apoptosis in activated RAW 264.7 cells and inhibition of pro-inflammatory mediators in rat air pouch by ethylacetate fraction of Ocimum gratissimum leaves. Advances in Traditional Medicine, 22(3), 659–671. https://doi.org/10.1007/s13596-021-00554-x
  • Alam, M. T., Amos, G. C. A., Murphy, A. R. J., Murch, S., Wellington, E. M. H., & Arasaradnam, R. P. (2020). Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens, 12(1), 1. https://doi.org/10.1186/s13099-019-0341-6
  • Bode, J. G., Ehlting, C., & Häussinger, D. (2012). The macrophage response towards LPS and its control through the p38MAPK–STAT3 axis. Cellular Signalling, 24(6), 1185–1194. https://doi.org/10.1016/j.cellsig.2012.01.018
  • Braga, S. S. (2019). Cyclodextrins: Emerging medicines of the new millennium. Biomolecules, 9(12), 801. https://doi.org/10.3390/biom9120801
  • Brown, K., Abbott, D. W., Uwiera, R. R. E., & Inglis, G. D. (2018). Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes, 9(3), 218–235. https://doi.org/10.1080/19490976.2017.1408763
  • Chen, H.-W., Lin, A.-H., Chu, H.-C., Li, C.-C., Tsai, C.-W., Chao, C.-Y., Wang, C.-J., Lii, C.-K., & Liu, K.-L. (2011). Inhibition of TNF-α-induced inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. Journal of Natural Products, 74(11), 2408–2413. https://doi.org/10.1021/np200631v
  • Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W., Song, J., Tan, X., Sun, E., Ning, Q., Liu, G., Jia, X., & Feng, L. (2021). Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. International Journal of Biological Macromolecules, 166, 1035–1045. https://doi.org/10.1016/j.ijbiomac.2020.10.259
  • Cui, Q., Tian, X., Liang, X., Zhang, Z., Wang, R., Zhou, Y., Yi, H., Gong, P., Lin, K., Liu, T., & Zhang, L. (2022). Bifidobacterium bifidum relieved DSS-induced colitis in mice potentially by activating the aryl hydrocarbon receptor. Food & Function, 13(9), 5115–5123. https://doi.org/10.1039/D1FO04219J
  • Di Lorenzo, A., Fernández-Hernando, C., Cirino, G., & Sessa, W. C. (2009). Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14552–14557. https://doi.org/10.1073/pnas.0904073106
  • Du, S., Huang, H., Li, X., Zhai, L., Zhu, Q., Zheng, K., Song, X., Xu, C., Li, C., Li, Y., He, Z., & Xiao, H. (2020). Anti-inflammatory properties of uvaol on DSS-induced colitis and LPS-stimulated macrophages. Chinese Medicine, 15(1), 43. https://doi.org/10.1186/s13020-020-00322-0
  • Duchêne, D., & Bochot, A. (2016). Thirty years with cyclodextrins. International Journal of Pharmaceutics, 514(1), 58–72. https://doi.org/10.1016/j.ijpharm.2016.07.030
  • Facchin, B. M., dos Reis, G. O., Vieira, G. N., Mohr, E. T. B., da Rosa, J. S., Kretzer, I. F., Demarchi, I. G., & Dalmarco, E. M. (2022). Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: A systematic review and meta-analysis. Inflammation Research, 71(7–8), 741–758. https://doi.org/10.1007/s00011-022-01584-0
  • Fenyvesi, É., Vikmon, M., & Szente, L. (2016). Cyclodextrins in food technology and human nutrition: Benefits and limitations. Critical Reviews in Food Science and Nutrition, 56(12), 1981–2004. https://doi.org/10.1080/10408398.2013.809513
  • Funasaki, N., Ishikawa, S., & Neya, S. (2008). Advances in physical chemistry and pharmaceutical applications of cyclodextrins. Pure and Applied Chemistry, 80(7), 1511–1524. https://doi.org/10.1351/pac200880071511
  • Ge, H., Zhang, B., Li, T., Yu, Y., Men, F., Zhao, S., Liu, J., & Zhang, T. (2021). Potential targets and the action mechanism of food-derived dipeptides on colitis: Network pharmacology and bioinformatics analysis. Food & Function, 12(13), 5989–6000. https://doi.org/10.1039/D1FO00469G
  • Grucela, A., & Steinhagen, R. M. (2009). Current surgical management of ulcerative colitis. The Mount Sinai Journal of Medicine, 76(6), 606–612. https://doi.org/10.1002/msj.20152
  • Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H.-Z., & Xu, X. (2013). Use of natural products as chemical library for drug discovery and network pharmacology. PLOS One, 8(4), e62839. https://doi.org/10.1371/journal.pone.0062839
  • Guo, X. Y., Liu, X. J., & Hao, J. Y. (2020). Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. Journal of Digestive Diseases, 21(3), 147–159. https://doi.org/10.1111/1751-2980.12849
  • Haifer, C., Paramsothy, S., Kaakoush, N. O., Saikal, A., Ghaly, S., Yang, T., Luu, L. D. W., Borody, T. J., & Leong, R. W. (2022). Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): A randomised, double-blind, placebo-controlled trial. The Lancet. Gastroenterology & Hepatology, 7(2), 141–151. https://doi.org/10.1016/S2468-1253(21)00400-3
  • Ham, M., & Moss, A. C. (2012). Mesalamine in the treatment and maintenance of remission of ulcerative colitis. Expert Review of Clinical Pharmacology, 5(2), 113–123. https://doi.org/10.1586/ecp.12.2
  • Han, R., Wang, L., Zhao, Z., You, L., Pedisić, S., Kulikouskaya, V., & Lin, Z. (2020). Polysaccharide from Gracilaria lemaneiformis prevents colitis in Balb/c mice via enhancing intestinal barrier function and attenuating intestinal inflammation. Food Hydrocolloids 109, 106048. https://doi.org/10.1016/j.foodhyd.2020.106048
  • Han, S., Gao, H., Chen, S., Wang, Q., Li, X., Du, L.-J., Li, J., Luo, Y.-Y., Li, J.-X., Zhao, L.-C., Feng, J., & Yang, S. (2019). Procyanidin A1 alleviates inflammatory response induced by LPS through NF-κB, MAPK, and Nrf2/HO-1 pathways in RAW264.7 cells. Scientific Reports, 9(1), 15087. https://doi.org/10.1038/s41598-019-51614-x
  • He, R., Li, P., Wang, J., Cui, B., Zhang, F., & Zhao, F. (2022). The interplay of gut microbiota between donors and recipients determines the efficacy of fecal microbiota transplantation. Gut Microbes, 14(1), 2100197. https://doi.org/10.1080/19490976.2022.2100197
  • Hers, I., Vincent, E. E., & Tavaré, J. M. (2011). Akt signalling in health and disease. Cellular Signalling, 23(10), 1515–1527. https://doi.org/10.1016/j.cellsig.2011.05.004
  • Holscher, H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
  • Hopkins, A. L. (2007). Network pharmacology. Nature Biotechnology, 25(10), 1110–1111. Article 10. https://doi.org/10.1038/nbt1007-1110
  • Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118
  • Wang, Y., Zhang, N., Kan, J., Zhang, X., Wu, X., Sun, R., Tang, S., Liu, J., Qian, C., & Jin, C. (2019). Structural characterization of water-soluble polysaccharide from Arctium lappa and its effects on colitis mice. Carbohydrate Polymers, 213, 89–99. https://doi.org/10.1016/j.carbpol.2019.02.090
  • Irie, T., & Uekama, K. (1997). Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. Journal of Pharmaceutical Sciences, 86(2), 147–162. https://doi.org/10.1021/js960213f
  • Jang, E. Y., Hong, K.-B., Chang, Y. B., Shin, J., Jung, E. Y., Jo, K., & Suh, H. J. (2020). In vitro prebiotic effects of malto-oligosaccharides containing water-soluble dietary fiber. Molecules, 25(21), 5201. https://doi.org/10.3390/molecules25215201
  • Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y., Lee, J. C., Schumm, L. P., Sharma, Y., Anderson, C. A., Essers, J., Mitrovic, M., Ning, K., Cleynen, I., Theatre, E., Spain, S. L., Raychaudhuri, S., Goyette, P., Wei, Z., … Cho, J. H. (2012). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 491(7422), 119–124. https://doi.org/10.1038/nature11582
  • K-da, S., Peerakietkhajorn, S., Siringoringo, B., Muangnil, P., Wichienchot, S., & Khuituan, P. (2020). Oligosaccharides from Gracilaria fisheri ameliorate gastrointestinal dysmotility and gut dysbiosis in colitis mice. Journal of Functional Foods, 71, 104021. https://doi.org/10.1016/j.jff.2020.104021
  • Kobayashi, T., Siegmund, B., Le Berre, C., Wei, S. C., Ferrante, M., Shen, B., Bernstein, C. N., Danese, S., Peyrin-Biroulet, L., & Hibi, T. (2020). Ulcerative colitis. Nature Reviews Disease Primers, 6(1), 74. https://doi.org/10.1038/s41572-020-0205-x
  • Kong, L., Smith, W., & Hao, D. (2019). Overview of RAW264.7 for osteoclastogensis study: Phenotype and stimuli. Journal of Cellular and Molecular Medicine, 23(5), 3077–3087. https://doi.org/10.1111/jcmm.14277
  • Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. International Journal of Pharmaceutics, 453(1), 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
  • Lázaro, C. M., de Oliveira, C. C., Gambero, A., Rocha, T., Cereda, C. M. S., de Araújo, D. R., & Tofoli, G. R. (2020). Evaluation of budesonide-hydroxypropyl-β-cyclodextrin inclusion complex in thermoreversible gels for ulcerative colitis. Digestive Diseases and Sciences, 65(11), 3297–3304. https://doi.org/10.1007/s10620-020-06075-y
  • Li, P., Xiao, N., Zeng, L., Xiao, J., Huang, J., Xu, Y., Chen, Y., Ren, Y., & Du, B. (2020). Structural characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut microbiota dysbiosis and DSS-induced colitis in mice. Carbohydrate Polymers, 250, 116958. https://doi.org/10.1016/j.carbpol.2020.116958
  • Liang, J., Chen, S., Chen, J., Lin, J., Xiong, Q., Yang, Y., Yuan, J., Zhou, L., He, L., Hou, S., Li, S., Huang, S., & Lai, X. (2018). Therapeutic roles of polysaccharides from Dendrobium officinale on colitis and its underlying mechanisms. Carbohydrate Polymers, 185, 159–168. https://doi.org/10.1016/j.carbpol.2018.01.013
  • Neurath, M. F., & Leppkes, M. (2019). Resolution of ulcerative colitis. Seminars in Immunopathology, 41(6), 747–756. https://doi.org/10.1007/s00281-019-00751-6
  • Peyrin-Biroulet, L., Germain, A., Patel, A. S., & Lindsay, J. O. (2016). Systematic review: Outcomes and post-operative complications following colectomy for ulcerative colitis. Alimentary Pharmacology & Therapeutics, 44(8), 807–816. https://doi.org/10.1111/apt.13763
  • Popov, S. V., Markov, P. A., Nikitina, I. R., Petrishev, S., Smirnov, V., & Ovodov, Y. S. (2006). Preventive effect of a pectic polysaccharide of the common cranberry Vaccinium oxycoccos L. on acetic acid-induced colitis in mice. World Journal of Gastroenterology, 12(41), 6646–6651. https://doi.org/10.3748/wjg.v12.i41.6646
  • Schrödinger, LLC (2015). The PyMOL molecular graphics system, Version 2.5.2.
  • Setia, S., Nehru, B., & Sanyal, S. N. (2014). Upregulation of MAPK/Erk and PI3K/Akt pathways in ulcerative colitis-associated colon cancer. Biomedicine & Pharmacotherapy, 68(8), 1023–1029. https://doi.org/10.1016/j.biopha.2014.09.006
  • Shen, Z.-H., Zhu, C.-X., Quan, Y.-S., Yang, Z.-Y., Wu, S., Luo, W.-W., Tan, B., & Wang, X.-Y. (2018). Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World Journal of Gastroenterology, 24(1), 5–14. https://doi.org/10.3748/wjg.v24.i1.5
  • Spears, J. K., Karr-Lilienthal, L. K., & Fahey, G. C. (2005). Influence of supplemental high molecular weight pullulan or gamma-cyclodextrin on ileal and total tract nutrient digestibility, fecal characteristics, and microbial populations in the dog. Archives of Animal Nutrition, 59(4), 257–270. https://doi.org/10.1080/17450390500216993
  • Sun, Y., Huo, J., Zhong, S., Zhu, J., Li, Y., & Li, X. (2021). Chemical structure and anti-inflammatory activity of a branched polysaccharide isolated from Phellinus baumii. Carbohydrate Polymers, 268, 118214. https://doi.org/10.1016/j.carbpol.2021.118214
  • Sun, Y., Shi, X., Zheng, X., Nie, S., & Xu, X. (2019). Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydrate Polymers, 207, 371–381. https://doi.org/10.1016/j.carbpol.2018.11.087
  • Taylor, S. J., Winter, M. G., Gillis, C. C., Silva, L. A. d., Dobbins, A. L., Muramatsu, M. K., Jimenez, A. G., Chanin, R. B., Spiga, L., Llano, E. M., Rojas, V. K., Kim, J., Santos, R. L., Zhu, W., & Winter, S. E. (2022). Colonocyte-derived lactate promotes E. coli fitness in the context of inflammation-associated gut microbiota dysbiosis. Microbiome, 10(1), 200. https://doi.org/10.1186/s40168-022-01389-7
  • The UniProt Consortium (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Timmer, A., Patton, P. H., Chande, N., McDonald, J. W., & MacDonald, J. K. (2016). Azathioprine and 6-mercaptopurine for maintenance of remission in ulcerative colitis. The Cochrane Database of Systematic Reviews, 2016(5), Cd000478. https://doi.org/10.1002/14651858.CD000478.pub4
  • Tripathi, K., & Feuerstein, J. D. (2019). New developments in ulcerative colitis: Latest evidence on management, treatment, and maintenance. Drugs in Context, 8, 212572–212572. https://doi.org/10.7573/dic.212572
  • UK IBD Genetics Consortium, Barrett, J. C., Lee, J. C., Lees, C. W., Prescott, N. J., Anderson, C. A., Phillips, A., Wesley, E., Parnell, K., Zhang, H., Drummond, H., Nimmo, E. R., Massey, D., Blaszczyk, K., Elliott, T., Cotterill, L., Dallal, H., Lobo, A. J., Mowat, C., … Strachan, D. P. (2009). Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nature Genetics, 41(12), 1330–1334. https://doi.org/10.1038/ng.483
  • Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L., & Colombel, J.-F. (2017). Ulcerative colitis. Lancet, 389(10080), 1756–1770. https://doi.org/10.1016/S0140-6736(16)32126-2
  • Walker, A. W., Sanderson, J. D., Churcher, C., Parkes, G. C., Hudspith, B. N., Rayment, N., Brostoff, J., Parkhill, J., Dougan, G., & Petrovska, L. (2011). High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiology, 11(1), 7. https://doi.org/10.1186/1471-2180-11-7
  • Wang, W., Li, X., Shi, F., Zhang, Z., & Lv, H. (2023). Study on the preparation of EGCG-γ-cyclodextrin inclusion complex and its drug-excipient combined therapeutic effects on the treatment of DSS-induced acute ulcerative colitis in mice. International Journal of Pharmaceutics, 630, 122419. https://doi.org/10.1016/j.ijpharm.2022.122419
  • Wei, D., Xie, L., Zhuang, Z., Zhao, N., Huang, B., Tang, Y., Yu, S., Zhou, Q., & Wu, Q. (2019). Gut microbiota: A new strategy to study the mechanism of electroacupuncture and moxibustion in treating ulcerative colitis. Evidence-Based Complementary and Alternative Medicine, 2019, 9730176. https://doi.org/10.1155/2019/9730176
  • Wüpper, S., Lüersen, K., & Rimbach, G. (2021). Cyclodextrins, natural compounds, and plant bioactives–A nutritional perspective. Biomolecules, 11(3), 401. https://doi.org/10.3390/biom11030401
  • Xu, F., Kang, Y., Zhang, H., Piao, Z., Yin, H., Diao, R., Xia, J., & Shi, L. (2013). Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection. The Journal of Infectious Diseases, 208(3), 528–538. https://doi.org/10.1093/infdis/jit177
  • Yadav, V. R., Suresh, S., Devi, K., & Yadav, S. (2009). Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech, 10(3), 752–762. https://doi.org/10.1208/s12249-009-9264-8
  • Yan, X., Yang, C., Yang, M., Ma, Y., Zhang, Y., Zhang, Y., Liu, C., Xu, Q., Tu, K., & Zhang, M. (2022). All-in-one theranostic nano-platform based on polymer nanoparticles for BRET/FRET-initiated bioluminescence imaging and synergistically anti-inflammatory therapy for ulcerative colitis. Journal of Nanobiotechnology, 20(1), 99. https://doi.org/10.1186/s12951-022-01299-8
  • Yang, C., Du, Y., Ren, D., Yang, X., & Zhao, Y. (2021). Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of turmeric polysaccharides against DSS-induced ulcerative colitis. Food & Function, 12(20), 9793–9807. https://doi.org/10.1039/D1FO01468D
  • Yang, H.-Y., Liu, M.-L., Luo, P., Yao, X.-S., & Zhou, H. (2022). Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine, 104, 154268. https://doi.org/10.1016/j.phymed.2022.154268
  • Yang, M., Yang, C., Zhang, Y., Yan, X., Ma, Y., Zhang, Y., Cao, Y., Xu, Q., Tu, K., & Zhang, M. (2022). An oral pH-activated “nano-bomb” carrier combined with berberine by regulating gene silencing and gut microbiota for site-specific treatment of ulcerative colitis. Biomaterials Science, 10(4), 1053–1067. https://doi.org/10.1039/D1BM01765A
  • Zhang, Q., Wu, Y., Wang, J., Wu, G., Long, W., Xue, Z., Wang, L., Zhang, X., Pang, X., Zhao, Y., Zhao, L., & Zhang, C. (2016). Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Scientific Reports, 6(1), 27572. https://doi.org/10.1038/srep27572
  • Zhao, X., Kang, B., Lu, C., Liu, S., Wang, H., Yang, X., Chen, Y., Jiang, B., Zhang, J., Lu, Y., & Zhi, F. (2011). Evaluation of p38 MAPK pathway as a molecular signature in ulcerative colitis. Journal of Proteome Research, 10(5), 2216–2225. https://doi.org/10.1021/pr100969w
  • Zheng, B., Ying, M., Xie, J., Chen, Y., Wang, Y., Ding, X., Hong, J., Liao, W., & Yu, Q. (2020). A Ganoderma atrum polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier. Food & Function, 11(12), 10690–10699. https://doi.org/10.1039/D0FO02260H
  • Zhou, X., Lu, Q., Kang, X., Tian, G., Ming, D., & Yang, J. (2021). Protective role of a new polysaccharide extracted from Lonicera japonica Thunb in mice with ulcerative colitis induced by dextran sulphate sodium. BioMed Research International, 2021, 8878633–8878633. https://doi.org/10.1155/2021/8878633

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.