127
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of cyclosporin derivatives as potential inhibitors for RdRp of rotavirus by molecular docking and molecular dynamic studies

&
Pages 5001-5014 | Received 21 Feb 2023, Accepted 05 Jun 2023, Published online: 30 Jul 2023

References

  • Agwamba, E. C., Udoikono, A. D., Louis, H., Udoh, E. U., Benjamin, I., Igbalagh, A. T., Edet, H. O., Ejiofor, E. U., & Ushaka, U. B. (2022). Synthesis, characterization, DFT studies, and molecular modeling of azo dye derivatives as potential candidate for trypanosomiasis treatment. Chemical Physics Impact, 4, 100076. https://doi.org/10.1016/j.chphi.2022.100076
  • Asim, M., Sarath Babu, V., Qin, Z., Zhao, L., Su, J., Li, J., Tu, J., Kou, H., & Lin, L. (2019). Inhibition of Cyclophilin A on the replication of red spotted grouper nervous necrosis virus associates with multiple pro-inflammatory factors. Fish & Shellfish Immunology, 92, 172–180. https://doi.org/10.1016/j.fsi.2019.05.064
  • Bauer, P., Hess, B., & Lindahl, E. (2022). GROMACS 2022.1 Manual. Zenodo, 1–673.
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Becke, A. D. (1988). Density functional exchange energy approximation with correct asymptotic behavior. Physical Review. A, General Physics, 38(6), 3098–3100. https://doi.org/10.1103/physreva.38.3098
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bernstein, D. I. (2009). Rotavirus overview. Pediatric Infectious Disease Journal, 28(suppl 3), S50–S53. https://doi.org/10.1097/INF.0b013e3181967bee
  • Bharatam, P. V. (2013). Drug Likeness Tool (DruLiTo 1).
  • Bhuinya, A., Dass, D., Banerjee, A., & Mukherjee, A. (2022). A tale of antiviral counterattacks in rotavirus infection. Microbiological Research, 260, 127046. https://doi.org/10.1016/j.micres.2022.127046
  • Biovia, D. S. (2020). BIOVIA discovery studio. Dassault Systèmes.
  • Cates, J. E., Tate, J. E., & Parashar, U. (2022). Rotavirus vaccines: Progress and new developments. Expert Opinion on Biological Therapy, 22(3), 423–432. https://doi.org/10.1080/14712598.2021.1977279
  • Chen, S., Wang, Y., Li, P., Yin, Y., Bijvelds, M. J., de Jonge, H. R., Peppelenbosch, M. P., Kainov, D. E., & Pan, Q. (2020). Drug screening identifies gemcitabine inhibiting rotavirus through alteration of pyrimidine nucleotide synthesis pathway. Antiviral Research, 180, 104823. https://doi.org/10.1016/j.antiviral.2020.104823
  • Crawford, S. E., Ramani, S., Tate, J. E., Parashar, U. D., Svensson, L., Hagbom, M., Franco, M. A., Greenberg, H. B., O'Ryan, M., Kang, G., Desselberger, U., & Estes, M. K. (2017). Rotavirus infection. Nature Reviews Disease Primers, 3(1), 1–16. https://doi.org/10.1038/nrdp.2017.83
  • Dai, J., Yi, G., Philip, A. A., & Patton, J. T. (2022). Rotavirus NSP1 subverts the antiviral oligoadenylate synthetase-RNase L pathway by inducing RNase L degradation. mBio, 13(6), e0299522. https://doi.org/10.1128/mbio.02995-22
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dennehy, P. H. (2008). Rotavirus vaccines: An overview. Clinical Microbiology Reviews, 21(1), 198–208. https://doi.org/10.1128/CMR.00029-07
  • Esona, M. D., & Gautam, R. (2015). Rotavirus. Clinics in Laboratory Medicine, 35(2), 363–391. https://doi.org/10.1016/j.cll.2015.02.012
  • Estes, M. K., & Cohen, J. E. A. N. (1989). Rotavirus gene structure and function. Microbiological Reviews, 53(4), 410–449. https://doi.org/10.1128/mr.53.4.410-449.1989
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09. Gaussian, Inc.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Glass, R. I., Parashar, U. D., Bresee, J. S., Turcios, R., Fischer, T. K., Widdowson, M.-A., Jiang, B., & Gentsch, J. R. (2006). Rotavirus vaccines: Current prospects and future challenges. Lancet (London, England), 368(9532), 323–332. https://doi.org/10.1016/S0140-6736(06)68815-6
  • Glowacka, P., Rudnicka, L., Warszawik-Hendzel, O., Sikora, M., Goldust, M., Gajda, P., Stochmal, A., Blicharz, L., Rakowska, A., & Olszewska, M. (2020). The antiviral properties of cyclosporine. Focus on coronavirus, hepatitis C virus, influenza virus, and human immunodeficiency virus infections. Biology, 9(8), 192. https://doi.org/10.3390/biology9080192
  • Gupta, A., Chaudhary, N., & Aparoy, P. (2018). MM-PBSA and per-residue decomposition energy studies on 7-Phenyl-imidazoquinolin-4 (5H)-one derivatives: Identification of crucial site points at microsomal prostaglandin E synthase-1 (mPGES-1) active site. International Journal of Biological Macromolecules, 119, 352–359. https://doi.org/10.1016/j.ijbiomac.2018.07.050
  • Han, J., Lee, M. K., Jang, Y., Cho, W. J., & Kim, M. (2022). Repurposing of cyclophilin A inhibitors as broad-spectrum antiviral agents. Drug Discovery Today, 27(7), 1895–1912. https://doi.org/10.1016/j.drudis.2022.05.016
  • Hansen, N., & Van Gunsteren, W. F. (2014). Practical aspects of free-energy calculations: A review. Journal of Chemical Theory and Computation, 10(7), 2632–2647. https://doi.org/10.1021/ct500161f
  • Hao, G. F., Jiang, W., Ye, Y. N., Wu, F. X., Zhu, X. L., Guo, F. B., & Yang, G. F. (2016). ACFIS: A web server for fragment-based drug discovery. Nucleic Acids Research, 44(W1), W550–W556. https://doi.org/10.1093/nar/gkw393
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Ishchenko, A. V., & Shakhnovich, E. I. (2002). Small molecule growth 2001 (SMoG2001): An improved knowledge-based scoring function for protein − ligand interactions. Journal of Medicinal Chemistry, 45(13), 2770–2780. https://doi.org/10.1021/jm0105833
  • Jenni, S., Salgado, E. N., Herrmann, T., Li, Z., Grant, T., Grigorieff, N., Trapani, S., Estrozi, L. F., & Harrison, S. C. (2019). In situ structure of rotavirus VP1 RNA-dependent RNA polymerase. Journal of Molecular Biology, 431(17), 3124–3138. https://doi.org/10.1016/j.jmb.2019.06.016
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1(1–6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Lang, P. T., Moustakas, D., Brozell, S., Carrascal, N., Mukherjee, S., Pegg, S., & Kuntz, I. (2015). Dock 6.7 users manual. The Official UCSF DOCK Web-Site. Fev.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salveti correlation energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lockhat, H. A., Silva, J. R. A., Alves, C. N., Govender, T., Lameira, J., Maguire, G. E. M., Sayed, Y., & Kruger, H. G. (2016). Binding free energy calculations of nine FDA-approved protease inhibitors against HIV‐1 subtype C I36T↑ T containing 100 amino acids per monomer. Chemical Biology & Drug Design, 87(4), 487–498. https://doi.org/10.1111/cbdd.12690
  • Louis, H., Gber, T. E., Asogwa, F. C., Eno, E. A., Unimuke, T. O., Bassey, V. M., & Ita, B. I. (2022). Understanding the lithiation mechanisms of pyrenetetrone-based carbonyl compound as cathode material for lithium-ion battery: Insight from first principle density functional theory. Materials Chemistry and Physics, 278, 125518. https://doi.org/10.1016/j.matchemphys.2021.125518
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Martins, L. S., Lameira, J., Kruger, H. G., Alves, C. N., & Silva, J. R. A. (2020). Evaluating the performance of a non-bonded Cu2+ model including Jahn − Teller effect into the binding of tyrosinase inhibitors. International Journal of Molecular Sciences, 21(13), 4783. https://doi.org/10.3390/ijms21134783
  • Miller, B. R., III, McGee, Jr, T. D., Swails, J. M., Homeyer N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muegge, I., & Martin, Y. C. (1999). A general and fast scoring function for protein − ligand interactions: A simplified potential approach. Journal of Medicinal Chemistry, 42(5), 791–804. https://doi.org/10.1021/jm980536j
  • Parashar, U. D., Bresee, J. S., Gentsch, J. R., & Glass, R. I. (1998). Rotavirus. Emerging Infectious Diseases, 4(4), 561–570. https://doi.org/10.3201/eid0404.980406
  • Patel, H. M., Shaikh, M., Ahmad, I., Lokwani, D., & Surana, S. J. (2021). BREED based de novo hybridization approach: Generating novel T790M/C797S-EGFR tyrosine kinase inhibitors to overcome the problem of mutation and resistance in non small cell lung cancer (NSCLC). Journal of Biomolecular Structure & Dynamics, 39(8), 2838–2856. https://doi.org/10.1080/07391102.2020.1754918
  • Patra, U., Mukhopadhyay, U., Sarkar, R., Mukherjee, A., & Chawla-Sarkar, M. (2019). RA-839, a selective agonist of Nrf2/ARE pathway, exerts potent anti-rotaviral efficacy in vitro. Antiviral Research, 161, 53–62. https://doi.org/10.1016/j.antiviral.2018.11.009
  • Poater, A., Saliner, A. G., Solà, M., Cavallo, L., & Worth, A. P. (2010). Computational methods to predict the reactivity of nanoparticles through structure–property relationships. Expert Opinion on Drug Delivery, 7(3), 295–305. https://doi.org/10.1517/17425240903508756
  • Polgár, L. (2005). The catalytic triad of serine peptidases. Cellular and Molecular Life Sciences: CMLS, 62(19–20), 2161–2172. https://doi.org/10.1007/s00018-005-5160-x
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489. https://doi.org/10.1006/jmbi.1996.0477
  • Rauwerdink, A., & Kazlauskas, R. J. (2015). How the same core catalytic machinery catalyzes 17 different reactions: The serine-histidine-aspartate catalytic triad of a/ß-hydrolase fold enzymes. ACS Catalysis, 5(10), 6153–6176. https://doi.org/10.1021/acscatal.5b01539
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sarkar, R., Nandi, S., Lo, M., Gope, A., & Chawla-Sarkar, M. (2021). Viperin, an IFN-stimulated protein, delays rotavirus release by inhibiting non-structural protein 4 (NSP4)-induced intrinsic apoptosis. Viruses, 13(7), 1324. https://doi.org/10.3390/v13071324
  • Sauerhering, L., Kupke, A., Meier, L., Dietzel, E., Hoppe, J., Gruber, A. D., Gattenloehner, S., Witte, B., Fink, L., Hofmann, N., Zimmermann, T., Goesmann, A., Nist, A., Stiewe, T., Becker, S., Herold, S., & Peteranderl, C. (2020). Cyclophilin inhibitors restrict Middle East respiratory syndrome coronavirus via interferon-λ in vitro and in mice. European Respiratory Journal, 56(5), 1901826. https://doi.org/10.1183/13993003.01826-2019
  • Sinha, P., & Yadav, A. K. (2022a). Derivatives of 2-methyl tetrahydrofuran-n-carboxylic acids inhibiting novel HA3 subtype of influenza A virus hemagglutinin. Journal of Computational Biophysics and Chemistry, 21(07), 783–796. https://doi.org/10.1142/S273741652250034X
  • Sinha, P., & Yadav, A. K. (2022b). Structural, electronic, spectroscopic and molecular docking analysis of novel hetero oxetane ring compound. Computational and Theoretical Chemistry, 1217, 113919. https://doi.org/10.1016/j.comptc.2022.113919
  • Sinha, P., & Yadav, A. K. (2023a). In silico identification and molecular dynamic simulations of derivatives of 6, 6-dimethyl-3-azabicyclo [3.1. 0] hexane-2-carboxamide against main protease 3CLpro of SARS-CoV-2 viral infection. Journal of Molecular Modeling, 29(5), 130. https://doi.org/10.1007/s00894-023-05535-2
  • Sinha, P., & Yadav, A. K. (2023b). Theoretical study of azetidine derivative by quantum chemical methods, molecular docking and molecular dynamic simulations. ChemistrySelect, 8(16), e202300190. https://doi.org/10.1002/slct.202300190
  • Souza, A. L., Cardoso, F. J., Martins, L. S., Alves, C. N., Silva, J. R., & Molfetta, F. A. (2021). Molecular modelling study of heteroarylamide/sulfonamide compounds with antitrypanosomal activity. Journal of the Brazilian Chemical Society, 32, 83–97. https://doi.org/10.21577/0103-5053.20200158
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Stahl, M., & Rarey, M. (2001). Detailed analysis of scoring functions for virtual screening. Journal of Medicinal Chemistry, 44(7), 1035–1042. https://doi.org/10.1021/jm0003992
  • Tohmé, M. J., & Delgui, L. R. (2021). Advances in the development of antiviral compounds for rotavirus infections. mBio, 12(3), e00111-21. https://doi.org/10.1128/mBio.00111-21
  • Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR, 2.
  • Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Arthurs, S., Colson, A. B., Freer, S. T., Larson, V., Luty, B. A., Marrone, T., & Rose, P. W. (2000). Deciphering common failures in molecular docking of ligand-protein complexes. Journal of Computer-Aided Molecular Design, 14(8), 731–751. https://doi.org/10.1023/a:1008158231558
  • Vesikari, T., Uhari, M., Renko, M., Hemming, M., Salminen, M., Torcel-Pagnon, L., Bricout, H., & Simondon, F. (2013). Impact and effectiveness of RotaTeq® vaccine based on 3 years of surveillance following introduction of a rotavirus immunization program in Finland. Pediatric Infectious Disease Journal, 32(12), 1365–1373. https://doi.org/10.1097/INF.0000000000000086
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Ward, R. L., & Bernstein, D. I. (2009). Rotarix: A rotavirus vaccine for the world. Clinical Infectious Diseases, 48(2), 222–228. https://doi.org/10.1086/595702
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
  • Zhang, Y., Kua, J., & McCammon, J. A. (2002). Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study. Journal of the American Chemical Society, 124(35), 10572–10577. https://doi.org/10.1021/ja020243m

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.