111
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Interaction between the antioxidant compound safranal and α-chymotrypsin in spectroscopic fields and molecular modeling approaches

, , &
Pages 4097-4109 | Received 18 Oct 2022, Accepted 21 May 2023, Published online: 15 Nov 2023

References

  • Abdelsattar, A. S., Dawoud, A., & Helal, M. A. (2021). Interaction of nanoparticles with biological macromolecules: A review of molecular docking studies. Nanotoxicology, 15(1), 66–95. https://doi.org/10.1080/17435390.2020.1842537
  • Alam, P., Chaturvedi, S. K., Anwar, T., Siddiqi, M. K., Ajmal, M. R., Badr, G., Mahmoud, M. H., & Hasan Khan, R. (2015). Biophysical and molecular docking insight into the interaction of cytosine β-D arabinofuranoside with human serum albumin. Journal of Luminescence, 164, 123–130. https://doi.org/10.1016/j.jlumin.2015.03.011
  • Ali, M. S., & Al-Lohedan, H. A. (2020). Spectroscopic and molecular docking investigation on the noncovalent interaction of lysozyme with saffron constituent “Safranal.” ACS Omega, 5(16), 9131–9141. https://doi.org/10.1021/acsomega.9b04291
  • Asemi-Esfahani, Z., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Effect of naphthol yellow S as a food dye on the lysozyme structure and its mechanisms of action. Journal of Molecular Liquids, 332, 115846. https://doi.org/10.1016/j.molliq.2021.115846
  • Asgharzadeh, S., Shareghi, B., & Farhadian, S. (2019). Experimental and theoretical investigations on the interaction of l-methionine molecules with α-chymotrypsin in the aqueous solution using various methods. International Journal of Biological Macromolecules, 131, 548–556. https://doi.org/10.1016/j.ijbiomac.2019.03.080
  • Asgharzadeh, S., Shareghi, B., Farhadian, S., & Tirgir, F. (2019). Effect of free L-cysteine on the structure and function of α-chymotrypsin. Journal of Molecular Liquids, 280, 79–86. https://doi.org/10.1016/j.molliq.2019.01.144
  • Behravan, J., Hosseinzadeh, H., Rastgoo, A., & Hessani, M. (2010). Evaluation of the cytotoxic activity of crocin and safranal using potato disc and brine shrimp assays. Physiology and Pharmacology, 13(4), 397–403.
  • Bijari, N., Shokoohinia, Y., Ashrafi-Kooshk, M. R., Ranjbar, S., Parvaneh, S., Moieni-Arya, M., & Khodarahmi, R. (2013). Spectroscopic study of interaction between osthole and human serum albumin: Identification of possible binding site of the compound. Journal of Luminescence, 143, 328–336. https://doi.org/10.1016/j.jlumin.2013.04.045
  • Butterfield, D. A., & Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews. Neuroscience, 20(3), 148–160. https://doi.org/10.1038/s41583-019-0132-6
  • Dehdasht-Heidari, N., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Investigation on the interaction behavior between safranal and pepsin by spectral and MD simulation studies. Journal of Molecular Liquids, 344, 117903. https://doi.org/10.1016/j.molliq.2021.117903
  • Dehkordi, S. H., Farhadian, S., & Ghasemi, M. (2021). The interaction between the azo dye tartrazine and α-chymotrypsin enzyme: Molecular dynamics simulation and multi-spectroscopic investigations. Journal of Molecular Liquids, 344, 117931. https://doi.org/10.1016/j.molliq.2021.117931
  • Dehkordi, S. H., Farhadian, S., Ghasemi, M., & Evini, M. (2022). Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/amoxicillin complex in a neutral environment. Food Hydrocolloids, 133, 107830. https://doi.org/10.1016/j.foodhyd.2022.107830
  • El Khoudri, M., Ouahhoud, S., Lahmass, M., Khoulati, A., Benyoussef, S., Mamri, S., Meziane, M., & Saalaoui, E. (2021). Biological effects and pharmacological activities of saffron of Crocus sativus. Arabian Journal of Medicinal and Aromatic Plants, 7(2), 254–268.
  • Erfanparast, A., Tamaddonfard, E., Taati, M., & Dabbaghi, M. (2015). Effects of crocin and safranal, saffron constituents, on the formalin-induced orofacial pain in rats. Avicenna Journal of Phytomedicine, 5(5), 392–402.
  • Eslami-Farsani, R., Farhadian, S., & Shareghi, B. (2022). Exploring the structural basis of conformational alterations of myoglobin in the presence of spermine through computational modeling, molecular dynamics simulations, and spectroscopy methods. Journal of Biomolecular Structure & Dynamics, 40(8), 3581–3594. https://doi.org/10.1080/07391102.2020.1848633
  • Eslami-Farsani, R., Farhadian, S., Shareghi, B., & Asgharzadeh, S. (2022). Structural change of myoglobin structure after binding with spermidine. Journal of Molecular Liquids, 352, 118691. https://doi.org/10.1016/j.molliq.2022.118691
  • Farahmand, S. K., Samini, F., Samini, M., & Samarghandian, S. (2013). Safranal ameliorates antioxidant enzymes and suppresses lipid peroxidation and nitric oxide formation in aged male rat liver. Biogerontology, 14(1), 63–71. https://doi.org/10.1007/s10522-012-9409-0
  • Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Asgharzadeh, S., Shareghi, B., & Shakerian, B. (2023). Insights into the binding interaction of Reactive Yellow 145 with human serum albumin from a biophysics point of view. Journal of Molecular Liquids, 369, 120800. https://doi.org/10.1016/j.molliq.2022.120800
  • Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Gholamian-Dehkordi, N., & Shareghi, B. (2021). Interaction of reactive Red195 with human serum albumin: Determination of the binding mechanism and binding site by spectroscopic and molecular modeling methods. Journal of Molecular Liquids, 327, 114835. https://doi.org/10.1016/j.molliq.2020.114835
  • Farhadian, S., Shareghi, B., Asgharzadeh, S., Rajabi, M., & Asadi, H. (2019). Structural characterization of α‑chymotrypsin after binding to curcumin: Spectroscopic and computational analysis of their binding mechanism. Journal of Molecular Liquids, 289, 111111. https://doi.org/10.1016/j.molliq.2019.111111
  • Farhadian, S., Shareghi, B., Momeni, L., Abou-Zied, O. K., Sirotkin, V. A., Tachiya, M., & Saboury, A. A. (2018). Insights into the molecular interaction between sucrose and α-chymotrypsin. International Journal of Biological Macromolecules, 114, 950–960. https://doi.org/10.1016/j.ijbiomac.2018.03.143
  • Farhadian, S., Shareghi, B., & Saboury, A. A. (2017). Exploring the thermal stability and activity of α-chymotrypsin in the presence of spermine. Journal of Biomolecular Structure & Dynamics, 35(2), 435–448. https://doi.org/10.1080/07391102.2016.1147984
  • Farhadian, S., Shareghi, B., Saboury, A. A., Babaheydari, A. K., Raisi, F., & Heidari, E. (2016). Molecular aspects of the interaction of spermidine and α-chymotrypsin. International Journal of Biological Macromolecules, 92, 523–532. https://doi.org/10.1016/j.ijbiomac.2016.07.069
  • Faridbod, F., Ganjali, M. R., Larijani, B., Riahi, S., Saboury, A. A., Hosseini, M., Norouzi, P., & Pillip, C. (2011). Interaction study of pioglitazone with albumin by fluorescence spectroscopy and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78(1), 96–101. https://doi.org/10.1016/j.saa.2010.09.001
  • Feyzi, S., Varidi, M., Housaindokht, M. R., & Es’ Haghi, Z. (2019). Binding of safranal to whey proteins in aqueous solution: Combination of headspace solid-phase microextraction/gas chromatography with multi spectroscopic techniques and docking studies. Food Chemistry, 287, 313–323. https://doi.org/10.1016/j.foodchem.2019.02.065
  • Ganaie, M. A., Samad, A., Ansari, M. N., Khan, T. H., Alam, P., & Ahamad, S. R. (2017). Phytochemical screening and in-silico investigation of crocin and safranal, constituents of saffron for their cytochrome P450 2C9 enzyme activity. International Journal of Pharmaceutical Research & Allied Sciences, 6(1), 1–14.
  • García-Rodríguez, M. V., López-Córcoles, H., Alonso, G. L., Pappas, C. S., Polissiou, M. G., & Tarantilis, P. A. (2017). Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. Food Chemistry, 221, 838–843. https://doi.org/10.1016/j.foodchem.2016.11.089
  • Geethanjali, H., Nagaraja, D., & Melavanki, R. (2015). Exploring the mechanism of fluorescence quenching in two biologically active boronic acid derivatives using Stern-Volmer kinetics. Journal of Molecular Liquids, 209, 669–675. https://doi.org/10.1016/j.molliq.2015.06.025
  • Hasan, Z., Islam, A., & Khan, L. A. (2023). Spectroscopic investigations on fungal aspartic protease as target of gallic acid. International Journal of Biological Macromolecules, 228, 333–345. https://doi.org/10.1016/j.ijbiomac.2022.12.218
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2021). Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. Journal of Molecular Liquids, 341, 117317. https://doi.org/10.1016/j.molliq.2021.117317
  • Haynes, C. A., & Norde, W. (1994). Globular proteins at solid/liquid interfaces. Colloids and Surfaces B: Biointerfaces, 2(6), 517–566. https://doi.org/10.1016/0927-7765(94)80066-9
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hijazi, S., & Israni, R. (2018). Oxidative and pharmaceutical properties of saffron (Crocus sativus).
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hosseinzadeh, H., Karimi, G., & Niapoor, M. (2004). Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. Journal of Medicinal Plants, 3(11), 48–58.
  • Hu, Y.-J., Liu, Y., Zhang, L.-X., Zhao, R.-M., & Qu, S.-S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure, 750(1-3), 174–178. https://doi.org/10.1016/j.molstruc.2005.04.032
  • Jing, M., Song, W., & Liu, R. (2016). Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 164, 103–109. https://doi.org/10.1016/j.saa.2016.04.008
  • Khorasanchi, Z., Shafiee, M., Kermanshahi, F., Khazaei, M., Ryzhikov, M., Parizadeh, M. R., Kermanshahi, B., Ferns, G. A., Avan, A., & Hassanian, S. M. (2018). Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 43, 21–27. https://doi.org/10.1016/j.phymed.2018.03.041
  • Korfi, F., Javid, H., Assaran Darban, R., & Hashemy, S. I. (2021). The effect of SP/NK1R on the expression and activity of catalase and superoxide dismutase in glioblastoma cancer cells. Biochemistry Research International, 2021, 6620708–6620708. https://doi.org/10.1155/2021/6620708
  • Kumari, M., Singh, U. K., Beg, I., Alanazi, A. M., Khan, A. A., & Patel, R. (2018). Effect of cations and anions of ionic liquids on the stability and activity of lysozyme: Concentration and temperature effect. Journal of Molecular Liquids, 272, 253–263. https://doi.org/10.1016/j.molliq.2018.09.075
  • Lelis, C. A., Ferreira, G. M. D., Ferreira, G. M. D., do Carmo Hespanhol, M., Pinto, M. S., da Silva, L. H. M., & dos Santos Pires, A. C. (2017). Determination of driving forces for bovine serum albumin-Ponceau4R binding using surface plasmon resonance and fluorescence spectroscopy: A comparative study. Food Hydrocolloids, 70, 29–35. https://doi.org/10.1016/j.foodhyd.2017.03.027
  • Li, H., Pu, J., Wang, Y., Liu, C., Yu, J., Li, T., & Wang, R. (2013). Comparative study of the binding of Trypsin with bifendate and analogs by spectrofluorimetry. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 115, 1–11. https://doi.org/10.1016/j.saa.2013.06.025
  • Liu, Y., & Liu, R. (2012). The interaction of α-chymotrypsin with one persistent organic pollutant (dicofol): Spectroscope and molecular modeling identification. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 50(9), 3298–3305. https://doi.org/10.1016/j.fct.2012.06.037
  • Luong, T. Q., & Winter, R. (2015). Combined pressure and cosolvent effects on enzyme activity–A high-pressure stopped-flow kinetic study on α-chymotrypsin. Physical Chemistry Chemical Physics: PCCP, 17(35), 23273–23278. https://doi.org/10.1039/c5cp03529e
  • Lupia, A., Mimmi, S., Iaccino, E., Maisano, D., Moraca, F., Talarico, C., Vecchio, E., Fiume, G., Ortuso, F., Scala, G., Quinto, I., & Alcaro, S. (2020). Molecular modelling of epitopes recognized by neoplastic B lymphocytes in chronic lymphocytic leukemia. European Journal of Medicinal Chemistry, 185, 111838. https://doi.org/10.1016/j.ejmech.2019.111838
  • Maggi, L., Sánchez, A. M., Carmona, M., Kanakis, C. D., Anastasaki, E., Tarantilis, P. A., Polissiou, M. G., & Alonso, G. L. (2011). Rapid determination of safranal in the quality control of saffron spice (Crocus sativus L.). Food Chemistry, 127(1), 369–373. https://doi.org/10.1016/j.foodchem.2011.01.028
  • Malekzadeh, S., Heidari, M. R., Razavi, B. M., Rameshrad, M., & Hosseinzadeh, H. (2019). Effect of safranal, a constituent of saffron, on olanzapine (an atypical antipsychotic) induced metabolic disorders in rat. Iranian Journal of Basic Medical Sciences, 22(12), 1476–1483.
  • Marshall, A. C., Keiller, B. G., Pederick, J. L., Abell, A. D., & Bruning, J. B. (2018). Crystal structure of bovine alpha-chymotrypsin in space group P65. Crystals, 8(12), 460–475. https://doi.org/10.3390/cryst8120460
  • Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2018). BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 46(W1), W315–W322. https://doi.org/10.1093/nar/gky497
  • Milajerdi, A., Bitarafan, V., & Mahmoudi, M. (2015). A review on the effects of saffron extract and its constituents on factors related to neurologic, cardiovascular and gastrointestinal diseases.
  • Mohammadi, M., Shareghi, B., Akbar Saboury, A., & Farhadian, S. (2020). Spermine as a possible endogenous allosteric activator of carboxypeptidase A: Multispectroscopic and molecular simulation studies. Journal of Biomolecular Structure & Dynamics, 38(1), 101–113. https://doi.org/10.1080/07391102.2019.1567387
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. In Molecular modeling of proteins (pp. 365–382). Springer.
  • Murphy, K. P. (1999). Predicting binding energetics from structure: Looking beyond ΔG. Medicinal Research Reviews, 19(4), 333–339. https://doi.org/10.1002/(SICI)1098-1128(199907)19:4<333::AID-MED6>3.0.CO;2-5
  • Musyoka, T. M., Kanzi, A. M., Lobb, K. A., & Bishop, Ö. T. (2016). Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Scientific Reports, 6(1), 23690. https://doi.org/10.1038/srep23690
  • Palermo, G., Casalino, L., Magistrato, A., & McCammon, J. A. (2019). Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Journal of Structural Biology, 206(3), 267–279. https://doi.org/10.1016/j.jsb.2019.03.004
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pitsikas, N. (2016). Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Molecules, 21(3), 303. https://doi.org/10.3390/molecules21030303
  • Rajabi, M., Farhadian, S., Shareghi, B., Asgharzadeh, S., & Momeni, L. (2019). Noncovalent interactions of bovine trypsin with curcumin and effect on stability, structure, and function. Colloids and Surfaces. B, Biointerfaces, 183, 110287. https://doi.org/10.1016/j.colsurfb.2019.06.017
  • Rezaee, R., & Hosseinzadeh, H. (2013). Safranal: From an aromatic natural product to a rewarding pharmacological agent. Iranian Journal of Basic Medical Sciences, 16(1), 12.
  • Rezaei, S., Assaran Darban, R., Javid, H., & Hashemy, S. I. (2022). The therapeutic potential of aprepitant in glioblastoma cancer cells through redox modification. BioMed Research International, 2022, 8540403–8540408. https://doi.org/10.1155/2022/8540403
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Sadat Moghaddam, M., Torabzadeh Khorasani, N., Assaran Darban, R., & Reza Rahimi, H. (2021). The effect of chamomile extract on coronavirus. Reviews in Clinical Medicine, 8(2).
  • Saeidifar, M., Mansouri-Torshizi, H., & Saboury, A. A. (2015). Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by multispectroscopic methods. Journal of Luminescence, 167, 391–398. https://doi.org/10.1016/j.jlumin.2015.07.016
  • Samarghandian, S., Shoshtari, M. E., Sargolzaei, J., Hossinimoghadam, H., & Farahzad, J. A. (2014). Anti-tumor activity of safranal against neuroblastoma cells. Pharmacognosy Magazine, 10(Suppl 2), S419–S424. https://doi.org/10.4103/0973-1296.133296
  • Shu, Y., Xue, W., Xu, X., Jia, Z., Yao, X., Liu, S., & Liu, L. (2015). Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique. Food Chemistry, 173, 31–37. https://doi.org/10.1016/j.foodchem.2014.09.164
  • Siddiqi, M. K., Alam, P., Chaturvedi, S. K., Nusrat, S., Ajmal, M. R., Abdelhameed, A. S., & Khan, R. H. (2017). Probing the interaction of cephalosporin antibiotic–ceftazidime with human serum albumin: A biophysical investigation. International Journal of Biological Macromolecules, 105(Pt 1), 292–299. https://doi.org/10.1016/j.ijbiomac.2017.07.036
  • Sułkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614(1-3), 227–232. https://doi.org/10.1016/S0022-2860(02)00256-9
  • Swetha, R. G., Ramaiah, S., & Anbarasu, A. (2016). Molecular dynamics studies on D835N mutation in FLT3—Its impact on FLT3 protein structure. Journal of Cellular Biochemistry, 117(6), 1439–1445. https://doi.org/10.1002/jcb.25434
  • Tabassum, S., Al-Asbahy, W. M., Afzal, M., & Arjmand, F. (2012). Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): Spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology. B, Biology, 114, 132–139. https://doi.org/10.1016/j.jphotobiol.2012.05.021
  • Tamaddonfard, E., Erfanparast, A., Farshid, A. A., Imani, M., Mirzakhani, N., Salighedar, R., & Tamaddonfard, S. (2019). Safranal, a constituent of saffron, exerts gastro-protective effects against indomethacin-induced gastric ulcer. Life Sciences, 224, 88–94. https://doi.org/10.1016/j.lfs.2019.03.054
  • Tao, Y., Rao, Z.-H., & Liu, S.-Q. (2010). Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. Journal of Biomolecular Structure & Dynamics, 28(2), 143–158. https://doi.org/10.1080/073911010010524953
  • Tian, J., Wei, S., Zhao, Y., Liu, R., & Zhao, S. (2010). Studies on interaction between CdTe quantum dots and α-chymotrypsin by molecular spectroscopy. Journal of Chemical Sciences, 122(3), 391–400. https://doi.org/10.1007/s12039-010-0044-5
  • Vahedi, S.-Z., Farhadian, S., Shareghi, B., Asgharzadeh, S., & Evini, M. (2022). Multi spectroscopy and molecular modeling aspects related to drug interaction of aspirin with alpha chymotrypsin; structural change and protease activity. Journal of Molecular Liquids, 352, 118698. https://doi.org/10.1016/j.molliq.2022.118698
  • Veech, R. L. (2004). The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: Ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70(3), 309–319. https://doi.org/10.1016/j.plefa.2003.09.007
  • Wang, X., Liu, Y., He, L.-L., Liu, B., Zhang, S.-Y., Ye, X., Jing, J.-J., Zhang, J.-F., Gao, M., & Wang, X. (2015). Spectroscopic investigation on the food components–drug interaction: The influence of flavonoids on the affinity of nifedipine to human serum albumin. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 78, 42–51. https://doi.org/10.1016/j.fct.2015.01.026
  • Whitcomb, D. C., & Lowe, M. E. (2007). Human pancreatic digestive enzymes. Digestive Diseases and Sciences, 52(1), 1–17. https://doi.org/10.1007/s10620-006-9589-z
  • Zhao, X., Liu, R., Chi, Z., Teng, Y., & Qin, P. (2010). New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: Comprehensive spectroscopic studies. The Journal of Physical Chemistry B, 114(16), 5625–5631. https://doi.org/10.1021/jp100903x
  • Zhu, J., Chen, L., Dong, Y., Li, J., & Liu, X. (2014). Spectroscopic and molecular modeling methods to investigate the interaction between 5-hydroxymethyl-2-furfural and calf thymus DNA using ethidium bromide as a probe. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 124, 78–83. https://doi.org/10.1016/j.saa.2013.12.091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.